使用ES不久,今天发现生产环境数据异常,其使用的ES版本是2.1.2,其它版本也类似。通过使用ES的HTTP API进行查询,发现得到的数据跟javaClient API 查询得到的数据不一致,于是对代码逻辑以及ES查询工具产生了怀疑。通过查阅官方文档找到如下描述:

Precision controledit

This aggregation also supports the precision_threshold option:

The precision_threshold option is specific to the current internal implementation of the cardinality agg, which may change in the future

{
"aggs" : {
"author_count" : {
"cardinality" : {
"field" : "author_hash",
"precision_threshold": 100
            }
}
}
}

The precision_threshold options allows to trade memory for accuracy, and defines a unique count below which counts are expected to be close to accurate. Above this value, counts might become a bit more fuzzy. The maximum supported value is 40000, thresholds above this number will have the same effect as a threshold of 40000. Default value depends on the number of parent aggregations that multiple create buckets (such as terms or histograms).

Counts are approximateedit

Computing exact counts requires loading values into a hash set and returning its size. This doesn’t scale when working on high-cardinality sets and/or large values as the required memory usage and the need to communicate those per-shard sets between nodes would utilize too many resources of the cluster.

This cardinality aggregation is based on the HyperLogLog++ algorithm, which counts based on the hashes of the values with some interesting properties:

  • configurable precision, which decides on how to trade memory for accuracy,
  • excellent accuracy on low-cardinality sets,
  • fixed memory usage: no matter if there are tens or billions of unique values, memory usage only depends on the configured precision.

For a precision threshold of c, the implementation that we are using requires about c * 8 bytes.

The following chart shows how the error varies before and after the threshold:

For all 3 thresholds, counts have been accurate up to the configured threshold (although not guaranteed, this is likely to be the case). Please also note that even with a threshold as low as 100, the error remains under 5%, even when counting millions of items.

 

  其意思就是:聚合查询存在误差,在5%范围之内,通过调整“precision_threshold”参数进行调整。

  于是翻阅查询代码:加入如下部分问题得到解决。该参数在查询时未设置的情况下,默认值为3000。

  

 private void buildSearchQueryForAgg(NativeSearchQueryBuilder nativeSearchQueryBuilder) {
// 设置聚合条件
TermsBuilder agg = AggregationBuilders.terms(aggreName).field(XXX.XXX).size(Integer.MAX_VALUE); // 查询条件构建
BoolQueryBuilder packBoolQuery = QueryBuilders.boolQuery();
FilterAggregationBuilder packAgg = AggregationBuilders.filter(xxx).filter(packBoolQuery); packAgg.subAggregation(AggregationBuilders.cardinality(xxx).field(ZZZZ.XXX).precisionThreshold(CARDINALITY_PRECISION_THRESHOLD));//指定精度值
agg.subAggregation(packAgg); nativeSearchQueryBuilder.addAggregation(agg);
}

ElasticSearch Cardinality Aggregation聚合计算的误差的更多相关文章

  1. Elasticsearch:aggregation介绍

    聚合(aggregation)功能集是整个Elasticsearch产品中最令人兴奋和有益的功能之一,主要是因为它提供了一个非常有吸引力对之前的facets的替代. 在本教程中,我们将解释Elasti ...

  2. Django Aggregation聚合 django orm 求平均、去重、总和等常用方法

    Django Aggregation聚合 在当今根据需求而不断调整而成的应用程序中,通常不仅需要能依常规的字段,如字母顺序或创建日期,来对项目进行排序,还需要按其他某种动态数据对项目进行排序.Djng ...

  3. JS数字计算精度误差的解决方法

    本篇文章主要是对javascript避免数字计算精度误差的方法进行了介绍,需要的朋友可以过来参考下,希望对大家有所帮助. 如果我问你 0.1 + 0.2 等于几?你可能会送我一个白眼,0.1 + 0. ...

  4. mssql sqlserver 对不同群组对象进行聚合计算的方法分享

    摘要: 下文讲述通过一条sql语句,采用over关键字同时对不同类型进行分组的方法,如下所示: 实验环境:sql server 2008 R2 当有一张明细表,我们需同时按照不同的规则,计算平均.计数 ...

  5. 开发中使用mongoTemplate进行Aggregation聚合查询

    笔记:使用mongo聚合查询(一开始根本没接触过mongo,一点一点慢慢的查资料完成了工作需求) 需求:在订单表中,根据buyerNick分组,统计每个buyerNick的电话.地址.支付总金额以及总 ...

  6. java使用elasticsearch分组进行聚合查询(group by)-项目中实际应用

    java连接elasticsearch 进行聚合查询进行相应操作 一:对单个字段进行分组求和 1.表结构图片: 根据任务id分组,分别统计出每个任务id下有多少个文字标题 .SQL:select id ...

  7. 小试牛刀ElasticSearch大数据聚合统计

    ElasticSearch相信有不少朋友都了解,即使没有了解过它那相信对ELK也有所认识E即是ElasticSearch.ElasticSearch最开始更多用于检索,作为一搜索的集群产品简单易用绝对 ...

  8. Django Aggregation聚合

    在当今根据需求而不断调整而成的应用程序中,通常不仅需要能依常规的字段,如字母顺序或创建日期,来对项目进行排序,还需要按其他某种动态数据对项目进行排序.Djngo聚合就能满足这些要求. 以下面的Mode ...

  9. MDX Step by Step 读书笔记(七) - Performing Aggregation 聚合函数之 Sum, Aggregate, Avg

    开篇介绍 SSAS 分析服务中记录了大量的聚合值,这些聚合值在 Cube 中实际上指的就是度量值.一个给定的度量值可能聚合了来自事实表中上千上万甚至百万条数据,因此在设计阶段我们所能看到的度量实际上就 ...

随机推荐

  1. webpack4 output配置 filename chunkhash报错

    这里的hash由chunkhash改成hash,原因是使用HotModuleReplacementPlugin之后不能使用chunkhash和contenthash.看到有些地方说把“hot:true ...

  2. Python学习之旅:使用virtualenv创建Python环境及PyQT5环境配置

    一.写在前面 从学 Python 的第一天起,我就知道了使用 pip 命令来安装包,从学习爬虫到学习 Web 开发,安装的库越来越多,从 requests 到 lxml,从 Django 到 Flas ...

  3. JSON和Map,List,String互相转换

    1)Map 和 JSON 互相转换 Map 转成 JSON Map<String, List> map = new HashMap<>(); map.put("xAx ...

  4. 【Offer】[20] 【表示数值的字符串】

    题目描述 思路分析 测试用例 Java代码 代码链接 题目描述 请实现一个函数用来判断字符串是否表示数值(包括整数和小数).例如,字符串"+100","5e2" ...

  5. Mysql 用户root密码重置

    Asterisk安装完成之后,接手新的Asterisk系统后不清楚Mysql的root账号密码. 重新重置mysql的root密码的方式 先查看mysql的版本号. 我的测试环境下的mysql版本为5 ...

  6. Codeforces1093E_Intersection of Permutations

    题意 给定两个排列a和b,两种操作,交换b_i和b_j,询问a[l_a...r_a]和b[l_b...r_b]有多少个数相同. 分析 由于给的是排列,保证b的每个数都有a的对应,构造数组c,c[i]表 ...

  7. 集成学习方法Boosting和Bagging

    集成学习是通过构架并结合多个学习器来处理学习任务的一种思想, 目前主要分为两大类:Boosting和Bagging. 对于任意一种集成方法, 我们都希望学习出来的基分类器具有较高的准确性和多样性, 基 ...

  8. F#周报2019年第37期

    新闻 宣告ML.NET 1.4的预览版及更新模型构建器 .NET展示会:一系列的活动! Octopus入门版:对于小团队免费 宣告.NET Core 3.0预览版9 使用IntelliCode更简单地 ...

  9. vuex-class用法

    vuex-class可以包装vuex的写法,使代码简化 Installation $ npm install --save vuex-class Example import Vue from 'vu ...

  10. apache ignite系列(三):数据处理(数据加载,数据并置,数据查询)

    ​ 使用ignite的一个常见思路就是将现有的关系型数据库中的数据导入到ignite中,然后直接使用ignite中的数据,相当于将ignite作为一个缓存服务,当然ignite的功能远不止于此,下面以 ...