NLTK实现文本切分
之前已经了解了使用nltk库,将文本作为参数传入相应函数进行切分的方法,下面看看使用正则表达式如何来进行文本切分。
1. 使用正则表达式切分
1.1 通过RegexpTokenizer 进行切分。先导入 RegexpTokenizer 模块,然后构建一个与文本中的标识符相匹配的正则表达式。将此正则表达式作为参数传入RegexpTokenizer ,同时实例化一个对象,使用此对象对文本进行切分。
from nltk.tokenize import RegexpTokenizer # RegexpTokenizer() 参数是将要匹配的字符串的正则表达式,返回值是所有匹配到的字符串组成的列表
tokenizer = RegexpTokenizer("\w+")
print(tokenizer.tokenize("Don't hesitate to ask questions!"))
运行结果:
['Don', 't', 'hesitate', 'to', 'ask', 'questions']
1.2 使用 regexp_tokenize 切分。
from nltk.tokenize import regexp_tokenize
sentence = "My name is QWE, and I'm 22 years old."
print(regexp_tokenize(sentence, pattern= '\w+|\$[\d\.]+|\S+'))
运行结果:
['My', 'name', 'is', 'QWE', ',', 'and', 'I', "'m", '', 'years', 'old', '.']
1.3 以空格为分界点进行切分
from nltk.tokenize import RegexpTokenizer tok = RegexpTokenizer('\s+', gaps= True)
print(tok.tokenize("Don't hesitate to ask questions"))
1.4 筛选以大写字母开头的单词
from nltk.tokenize import RegexpTokenizer
sentence = "My name is QWE, and I'm 22 years old.I'm from China"
capt = RegexpTokenizer('[A-Z]\w+')
print(capt.tokenize(sentence))
结果:
['My', 'QWE', 'China']
(看起来都像是直接用正则匹配的。。)
1.5 使用WhitespaceTokenizer可以通过返回元组形式的序列来进行切分,该序列为标识符在语句中的位置和偏移量。
from nltk.tokenize import WhitespaceTokenizer
sentence = " She secured 90.56 % in class X \n. She is a meritorious student\n"
print(list(WhitespaceTokenizer().span_tokenize(sentence)))
结果:
[(1, 4), (5, 12), (13, 18), (19, 20), (21, 23), (24, 29), (30, 31), (33, 34), (35, 38), (39, 41), (42, 43), (44, 55), (56, 63)]
NLTK实现文本切分的更多相关文章
- 【NLP】Python NLTK获取文本语料和词汇资源
Python NLTK 获取文本语料和词汇资源 作者:白宁超 2016年11月7日13:15:24 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集 ...
- 使用 NLTK 对文本进行清洗,索引工具
使用 NLTK 对文本进行清洗,索引工具 EN_WHITELIST = '0123456789abcdefghijklmnopqrstuvwxyz ' # space is included in w ...
- nltk处理文本
nltk(Natural Language Toolkit)是处理文本的利器. 安装 pip install nltk 进入python命令行,键入nltk.download()可以下载nltk需要的 ...
- 【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理
干货!详述Python NLTK下如何使用stanford NLP工具包 作者:白宁超 2016年11月6日19:28:43 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的 ...
- 【NLP】Python NLTK处理原始文本
Python NLTK 处理原始文本 作者:白宁超 2016年11月8日22:45:44 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开 ...
- [转]【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理 阅读目录
[NLP]干货!Python NLTK结合stanford NLP工具包进行文本处理 原贴: https://www.cnblogs.com/baiboy/p/nltk1.html 阅读目录 目 ...
- 机器学习之路: python nltk 文本特征提取
git: https://github.com/linyi0604/MachineLearning 分别使用词袋法和nltk自然预言处理包提供的文本特征提取 from sklearn.feature_ ...
- 使用Python中的NLTK和spaCy删除停用词与文本标准化
概述 了解如何在Python中删除停用词与文本标准化,这些是自然语言处理的基本技术 探索不同的方法来删除停用词,以及讨论文本标准化技术,如词干化(stemming)和词形还原(lemmatizatio ...
- nltk的安装和简单使用
使用python进行自然语言处理,有一些第三方库供大家使用: ·NLTK(Python自然语言工具包)用于诸如标记化.词形还原.词干化.解析.POS标注等任务.该库具有几乎所有NLP任务的工具. ·S ...
随机推荐
- 前端js,如何在结构化与性能中做取舍。
js发展中的问题 随着前端web技术的发展,js要解决的问题也变得越来越多,越来越复杂. 解决更复杂的问题,需要更好的结构. 解决更复杂的问题,也需要更好的性能. 结构的优化在一定程度上会牺牲性能,同 ...
- 有奖投票丨HC2019开发者关注的TOP10问题你最想听哪个?
目前,人工智能已经成为广大开发者重点关注的技术领域.然而,随着人工智能技术的快速发展,AI应用场景复杂度在与日俱增,算法调教也亟需不断成熟,这些都为开发者们带来了更多全新的挑战.如何快速把握前沿技术的 ...
- Swap Digits
Description ) in the first line, which has the same meaning as above. And the number is in the next ...
- WebGPU学习(五): 现代图形API技术要点和WebGPU支持情况调研
大家好,本文整理了现代图形API的技术要点,重点研究了并行和GPU Driven Render Pipeline相关的知识点,调查了WebGPU的相关支持情况. 另外,本文对实时光线追踪也进行了简要的 ...
- Redis中的Java分布式缓存
为什么在分布式Java应用程序中使用缓存?今天学习了两节优锐课讲解分布式缓存的内容,收获颇多,分享给大家. 在提高应用程序的速度和性能时,每毫秒都是至关重要的.例如,根据Google的一项研究,如果网 ...
- 适用于带fifo接口的存储器和显示器测试模块封装 挑战cb
cb说完美是没有极限的,对此我表示赞同,自从用了cb的板子,玩开cmos,fpga,sdram,vga等. 不断涌现的是,双端口sdram,四端口sdram,各式各样的封装,但是大同小异,但总是有些不 ...
- shell 100
1.编写hello world脚本 #!/bin/bash# 编写hello world脚本 echo "Hello World!"2.通过位置变量创建 Linux 系统账户及密码 ...
- Test 1022
T1 AERODROM (二分答案 TimeLimit: 1000MS Memory Limit: 32768KB \(N\)个登机口,办理登机业务,第\(i\)个窗口的单位办理时间为\(T_i\), ...
- 《Java知识应用》Java读写DBF文件
1. 准备: Jar包下载:链接: https://pan.baidu.com/s/1Ikxx-vkw5vSDf9SBUQHBCw 提取码: 7h58 复制这段内容后打开百度网盘手机App,操作更方便 ...
- 如何"快准狠"找到内存相关的问题
为了迅速定位内存问题,通常会先运行几个覆盖面比较大的性能工具,比如 free.top.vmstat.pidstat 等. 具体的分析思路主要有这几步 先用 free 和 top,查看系统整体的内存使用 ...