keras 学习笔记(二) ——— data_generator
data_generator
每次输出一个batch,基于keras.utils.Sequence
Base object for fitting to a sequence of data, such as a dataset.
Every
Sequence
must implement the__getitem__
and the__len__
methods. If you want to modify your dataset between epochs you may implementon_epoch_end
. The method__getitem__
should return a complete batch.Notes
Sequence
are a safer way to do multiprocessing. This structure guarantees that the network will only train once on each sample per epoch which is not the case with generators.
Sequence example: https://keras.io/utils/#sequence
#!/usr/bin/env python
# coding: utf-8 from keras.utils import Sequence
import numpy as np
from keras.preprocessing import image
from skimage.io import imread class My_Custom_Generator(Sequence) :
def __init__(self, image_filenames, labels, batch_size) :
self.image_filenames = image_filenames
self.labels = labels
self.batch_size = batch_size
def __len__(self) :
return (np.ceil(len(self.image_filenames) / float(self.batch_size))).astype(np.int) def __getitem__(self, idx) :
batch_y = self.labels[idx * self.batch_size : (idx+1) * self.batch_size]
batch_x = self.image_filenames[idx * self.batch_size : (idx+1) * self.batch_size]
batch_seq = [] #batch_seq
for x in batch_x: #len(x) =16
seq_img = []
for img in x: #len(item) =25
seq_img.append(image.img_to_array(imread(img)))
seq_x = np.array([seq_img])
batch_seq.append(seq_img)
batch_seq_list = np.array(batch_seq)
return batch_seq_list, np.array(batch_y)
两种将数据输出为numpy.array的方法
通过list转为numpy.array
速度快,list转array过程需要注意数据维度变化
''' list
batch_x =X_train_filenames[idx * batch_size : (idx+1) * batch_size]
batch_seq = [] #batch_seq
for x in batch_x: #len(x) =16
seq_img = []
for img in x: #len(item) =25
seq_img.append(image.img_to_array(imread(img)))
seq_x = np.array([seq_img])
batch_seq.append(seq_img)
batch_seq_list = np.array(batch_seq)
'''
利用np.empty
速度慢,开始前确定batch维度即可
'''numpy
batch_x =X_train_filenames[idx * batch_size : (idx+1) * batch_size]
batch_seq = np.empty((0,25,224,224,3),float)
for x in batch_x: #len(x) =16
seq_batch = np.empty((0,224,224,3),float)
for item in x: #len(item) =25
seq_batch = np.append(seq_batch, np.expand_dims(image.img_to_array(imread(item)), axis=0), axis = 0)
batch_seq2 = np.append(batch_seq, np.expand_dims((seq_batch), axis=0), axis = 0)
'''
keras 学习笔记(二) ——— data_generator的更多相关文章
- Keras学习笔记二:保存本地模型和调用本地模型
使用深度学习模型时当然希望可以保存下训练好的模型,需要的时候直接调用,不再重新训练 一.保存模型到本地 以mnist数据集下的AutoEncoder 去噪为例.添加: file_path=" ...
- Keras学习笔记——Hello Keras
最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下 ...
- WPF的Binding学习笔记(二)
原文: http://www.cnblogs.com/pasoraku/archive/2012/10/25/2738428.htmlWPF的Binding学习笔记(二) 上次学了点点Binding的 ...
- AJax 学习笔记二(onreadystatechange的作用)
AJax 学习笔记二(onreadystatechange的作用) 当发送一个请求后,客户端无法确定什么时候会完成这个请求,所以需要用事件机制来捕获请求的状态XMLHttpRequest对象提供了on ...
- [Firefly引擎][学习笔记二][已完结]卡牌游戏开发模型的设计
源地址:http://bbs.9miao.com/thread-44603-1-1.html 在此补充一下Socket的验证机制:socket登陆验证.会采用session会话超时的机制做心跳接口验证 ...
- JMX学习笔记(二)-Notification
Notification通知,也可理解为消息,有通知,必然有发送通知的广播,JMX这里采用了一种订阅的方式,类似于观察者模式,注册一个观察者到广播里,当有通知时,广播通过调用观察者,逐一通知. 这里写 ...
- java之jvm学习笔记二(类装载器的体系结构)
java的class只在需要的时候才内转载入内存,并由java虚拟机的执行引擎来执行,而执行引擎从总的来说主要的执行方式分为四种, 第一种,一次性解释代码,也就是当字节码转载到内存后,每次需要都会重新 ...
- Java IO学习笔记二
Java IO学习笔记二 流的概念 在程序中所有的数据都是以流的方式进行传输或保存的,程序需要数据的时候要使用输入流读取数据,而当程序需要将一些数据保存起来的时候,就要使用输出流完成. 程序中的输入输 ...
- 《SQL必知必会》学习笔记二)
<SQL必知必会>学习笔记(二) 咱们接着上一篇的内容继续.这一篇主要回顾子查询,联合查询,复制表这三类内容. 上一部分基本上都是简单的Select查询,即从单个数据库表中检索数据的单条语 ...
- NumPy学习笔记 二
NumPy学习笔记 二 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.<数学分 ...
随机推荐
- 关于jvm的常识介绍
1.关于jvm的组成(只介绍1.8,以前的版本不多介绍) vm stack,native method stack,program counter register,heap,metaspace 2. ...
- Python程序中的进程操作-进程间通信(multiprocess.Queue)
目录 一.进程间通信 二.队列 2.1 概念介绍--multiprocess.Queue 2.1.1 方法介绍 2.1.2 其他方法(了解) 三.代码实例--multiprocess.Queue 3. ...
- Python 爬虫介绍,什么是爬虫,如何学习爬虫?
作为程序员,相信大家对“爬虫”这个词并不陌生,身边常常会有人提这个词,在不了解它的人眼中,会觉得这个技术很高端很神秘.不用着急,我们的爬虫系列就是带你去揭开它的神秘面纱,探寻它真实的面目. 爬虫是 ...
- path()函数
path()函数具有以下四个参数 route 必须 view 必须 kwargs 可选 name 可选 route route是一个匹配URL的准则(类似正则表达式) 当Django响应一个请求时,它 ...
- Linux内核驱动之GPIO子系统API接口概述
1.前言 在嵌入式Linux开发中,对嵌入式SoC中的GPIO进行控制非常重要,Linux内核中提供了GPIO子系统,驱动开发者在驱动代码中使用GPIO子系统提供的API函数,便可以达到对GPIO控制 ...
- 【前端知识体系-NodeJS相关】浅谈NodeJS中间件
1. 中间件到底是个什么东西呢? [!NOTE] 中间件其是一个函数,在响应发送之前对请求进行一些操作 function middleware(req,res,next){ // 做该干的事 // 做 ...
- Requests库主要方法解析以及Requests库入门需要掌握的框架
Requests库主要方法解析以及Requests库入门 1.requests.request(method,url,**kwargs) **kwargs:控制访问的参数,均为可选项 params:字 ...
- MVC模式和Spring MVC初识
概述 传统的Model1和Model2 在Model1的模式下,整个Web应用几乎全部是由JSP页面组成,接受和处理用户请求,并对请求处理后直接做出响应:JSP身兼View和Controller两个角 ...
- SQL 带有output、inserted、deleted
因需求的关系需要将修改的值返回,故查了些资料发现了OUTPUT这个好东西,现记录下来以防以后忘记 使用例子: 1.对于INSERT,可以引用inserted表以查询新行的属性. insert i ...
- 浅谈Java中switch分支语句
前言: 在程序中遇到多分支选择的时候,想必大家都喜欢用if...else if...else...语句,尤其是初学者,因为在了解switch语句之前,我也是只会用if...else语句.那么现在看完这 ...