cs231n---循环神经网络
1 RNN介绍
(1)一对多,多对一,多对多的任务
传统的神经网络只能处理一对一的任务,而RNN可以处理一对多,多对一,多对多的任务:

其中,一些典型的应用如下:
Image Captioning:image -> sequence of words (one to many)
Sentiment Classification:sequence of words -> sentiment (many to one)
Machine Translation:seq of words -> seq of words (many to many)
Video classification on frame level : many to many
(注意上图中两种many2many是不同的,左图是一个seg2seg的模型,即输出是不定长的,右图则表示在每次输入后都对应产生一个输出,输出是定长的)
(2)RNN
在时间t处,RNN模型可以表示如下:

每个时刻函数f接收上一时刻的隐藏态ht-1和当前时刻的输入xt,产生当前时刻的隐藏态ht。其中函数f是关于参数w的函数,在每个时刻参数w和函数f都应该是相同的。输出y可以由当前的隐藏态产生。
一个RNN模型的简单例子如下:

(3)几种RNN计算图
首先是输出定长的many2many计算图:

其中我们可以看到参数W在各个时刻是共享的,因此当反向传播时,W的梯度应该是各个时刻传过来的梯度之和。
many2one和one2many的计算图:


seg2seg的计算图,可以被拆解为many2one和one2many两部分。其中many2one部分被称为编码器,将输入x编码成一个定长的向量。one2many被称为解码器,负责将该向量转化成输出序列。如下:

2 例子:字符级的语言生成模型
训练阶段:

训练阶段,输入一个样本“hello”,我们经过一次前向传播产生输出。而我们的目标输出应该是输入序列向左平移一格,据此计算出损失,进而反向传播计算梯度,更新参数值,完成一轮迭代,进入下一次迭代。
测试阶段:

测试阶段,我们输入一个字母前缀,产生输出概率分布后,在这个分布上采样得到输出,并使用该输出作为下一时刻输入。(使用采样是为了得到多样化的输出)
可以看出,我们在训练阶段,一次前向传播或者一次反向传播,是要遍历一次整个序列的,也叫做Backpropagation through time 。有时候当我们的序列很长,这样前向传播和反向传播一次耗时会很长。这时有一种近似计算梯度的方法,就是截断的Backpropagation through time。我们每经过一定小步数的输入后,就前向传播计算一次损失,然后反向传播计算梯度:

3 图像标注
(1)典型的图像标注
一个典型的图像标注框架如下:

如上图,前向传播时,图像首先经过CNN网络处理,成为一个向量V,然后该向量V作为RNN的输入(注意此时有三个输入x,h,v)。
训练该网络时,梯度会从RNN一直回流到CNN,同时训练两个网络。
这个模型的结果很好,对于训练集中出现过的内容,模型可以很好的把他们标注出来;对于没有在训练集中出现的,模型会犯错。
(2)基于注意力的图像标注
另外还有一种基于注意力的图像标注方法,其模型结构如下:

其中,CNN部分不是产生了一个单一的向量,而是产生对应L个不同位置的特征向量(通过使用窗口在图像上不同位置滑动得到)。并且,在RNN中,每个时间步的输出除了词分布dt之外,还有一个位置分布at,表示模型将注意力集中到各个位置的概率分布,然后将此概率分布与特征矩阵相乘,得到加权的特征向量z:

然后将z和序列的下一个单词y一起作为下一个时间步的输入。
对于这样一个模型,可以发现它自动学到了在每个时间步去注意图像的不同区域:

4 深层RNN
RNN的隐藏状态可以是多层的,不过通常3~4层已经足够了,如下所示L:

5 LSTM
(1)传统RNN中的梯度流

可以看到,传统RNN的梯度需要流经若干乘法门,导致梯度需要连乘相同的W因子。
当W的最大奇异值大于1时,会发生梯度爆炸,梯度爆炸不是很严重的问题,通常使用梯度截断就能解决;
当W的最大奇异值小于1时,会发生梯度消失。我们都知道RNN是通过隐藏态h来表示上文信息,而梯度消失导致低时间步单元的输入值x对高时间步的隐藏态h影响非常小,也就是高时间步的h几乎不含有低时间步输入x的信息。这样模型在训练时就无法捕获到时间间隔较长的依赖关系,也就无法学习出一个能反映长期依赖关系的参数W。
这种梯度消失导致的长期依赖问题要通过修改网络的结构解决,代表性的就是LSTM。
(2)LSTM
一个LSTM单元的内部结构如下:

其中i,f,o,g分别称为输入门,遗忘门,输出门,“门之门”,下面会介绍它们各自的作用。
我们可以看到,f,i,o的值是0~1,g的值是-1~1
其中Ct表示细胞状态,每次Ct更新时,都要经过遗忘和写入两个阶段。遗忘阶段ct-1会与f逐元素相乘,选择性的丢弃一些信息,f中为1的元素对应的ct-1信息得以完全保留,为0的元素对应的ct-1信息会被完全丢弃。然后,i与g逐元素相乘,表示有多少新的信息要写入到细胞状态中。之后更新ct。
更新后的Ct对下一时刻隐藏态ht的影响是通过o来控制的。
我们查看LSTM反向传播时梯度流的情况:

可以看到,虽然流经h的梯度流仍然会很大程度衰减,但由于细胞状态C的引入,形成了一条流经C的额外的梯度高速公路。在流经C的路线上,梯度经过加法门是无损的,经过乘法门时,需要逐元素乘以一个f。相比于传统RNN,这里的情况好了很多,因为f在不同的单元中都是不同的,一般不会出现都小于1的情况,此外,逐元素相乘也比矩阵相乘好得多。这样就使得梯度传播到低时间步单元时仍然不衰减,模型能够联系时间上相隔很远的序列信息来进行学习,克服上面提到的长期依赖的问题。
这种添加额外连接来改善梯度流的方法很常见,如ResNet。
6 总结

RNN有很多种灵活的结构;
传统的RNN结构在实际中工作的并不好;
实际中通常使用LSTM或GRU,它们能很好地克服梯度消失;
RNN的反向传播会有梯度爆炸或消失的问题,使用梯度截断及控制梯度爆炸,使用其他结构来克服梯度消失(LSTM);
探寻RNN最好的结构是当前的热门研究方向。
cs231n---循环神经网络的更多相关文章
- 『cs231n』循环神经网络RNN
循环神经网络 循环神经网络介绍摘抄自莫凡博士的教程 序列数据 我们想象现在有一组序列数据 data 0,1,2,3. 在当预测 result0 的时候,我们基于的是 data0, 同样在预测其他数据的 ...
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...
- 循环神经网络(RNN)模型与前向反向传播算法
在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Rec ...
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM
http://cs231n.github.io/neural-networks-1 https://arxiv.org/pdf/1603.07285.pdf https://adeshpande3.g ...
- 『PyTorch』第十弹_循环神经网络
RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础R ...
- 循环神经网络(RNN)的改进——长短期记忆LSTM
一:vanilla RNN 使用机器学习技术处理输入为基于时间的序列或者可以转化为基于时间的序列的问题时,我们可以对每个时间步采用递归公式,如下,We can process a sequence ...
- Recurrent Neural Network系列1--RNN(循环神经网络)概述
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- Recurrent Neural Network(循环神经网络)
Reference: Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种 ...
- 循环神经网络(RNN, Recurrent Neural Networks)介绍(转载)
循环神经网络(RNN, Recurrent Neural Networks)介绍 这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neur ...
- 循环神经网络RNN公式推导走读
0语言模型-N-Gram 语言模型就是给定句子前面部分,预测后面缺失部分 eg.我昨天上学迟到了,老师批评了____. N-Gram模型: ,对一句话切词 我 昨天 上学 迟到 了 ,老师 批评 了 ...
随机推荐
- 12306抢票系统——ER图及数据表
12306自动抢票系统——ER图及数据表 1. 抢票系统ER图 数据表 2.抢票系统数据结构表 (1)列车表 Trains table 字段名 数据类型 说明 是否为主键 Train_id strin ...
- 奇袭(单调栈+分治+桶排)(20190716 NOIP模拟测试4)
C. 奇袭 题目类型:传统 评测方式:文本比较 内存限制:256 MiB 时间限制:1000 ms 标准输入输出 题目描述 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而 ...
- Running Code on a Thread Pool Thread_翻译
The previous lesson showed you how to define a class that manages thread pools and the tasks that ru ...
- Excel催化剂开源第47波-Excel与PowerBIDeskTop互通互联之第一篇
当国外都在追求软件开源,并且在GitHub等平台上产生了大量优质的开源代码时,但在国内却在刮着一股收割小白智商税的知识付费热潮,实在可悲. 互联网的精神乃是分享,让分享带来更多人的受益. 在Power ...
- SpringBoot解决cors跨域问题
1.使用@CrossOrigin注解实现 (1).对单个接口配置CORS @CrossOrigin(origins = {"*"}) @PostMapping("/hel ...
- android 发送邮件--实现 send email for android
Android 发送邮件消息 用途:发送验证码,通过邮箱找回密码 不需要调用客户端直接使用代码进行发送 本项目使用到的jar包–本文结尾会附带下载链接 activation.jar additionn ...
- [leetcode] 113. Path Sum II (Medium)
原题链接 子母题 112 Path Sum 跟112多了一点就是保存路径 依然用dfs,多了两个vector保存路径 Runtime: 16 ms, faster than 16.09% of C++ ...
- [HDOJ] 1753.大明A+B (大数加法)
Problem Description 话说,经过了漫长的一个多月,小明已经成长了许多,所以他改了一个名字叫"大明". 这时他已经不是那个只会做100以内加法的那个"小明 ...
- React躬行记(10)——高阶组件
高阶组件(High Order Component,简称HOC)不是一个真的组件,而是一个没有副作用的纯函数,以组件作为参数,返回一个功能增强的新组件,在很多第三方库(例如Redux.Relay等)中 ...
- Linux系统安装jdk——.tar.gz版
1.rpm.deb.tar.gz的区别: rpm格式的软件包适用于基于Red Hat发行版的系统,例如Red Hat Linux.SUSE.Fedora. deb格式的软件包则是适用于基于Debian ...