2957: 楼房重建

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 3294  Solved: 1554
[Submit][Status][Discuss]

Description

  小A的楼房外有一大片施工工地,工地上有N栋待建的楼房。每天,这片工地上的房子拆了又建、建了又拆。他经常无聊地看着窗外发呆,数自己能够看到多少栋房子。
  为了简化问题,我们考虑这些事件发生在一个二维平面上。小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度。如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的。
  施工队的建造总共进行了M天。初始时,所有楼房都还没有开始建造,它们的高度均为0。在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大---修建,也可以比原来小---拆除,甚至可以保持不变---建筑队这天什么事也没做)。请你帮小A数数每天在建筑队完工之后,他能看到多少栋楼房?

Input

  第一行两个正整数N,M
  接下来M行,每行两个正整数Xi,Yi

Output

  M行,第i行一个整数表示第i天过后小A能看到的楼房有多少栋

Sample Input

3 4
2 4
3 6
1 1000000000
1 1

Sample Output

1
1
1
2
数据约定
  对于所有的数据1<=Xi<=N,1<=Yi<=10^9
N,M<=100000
 

 
题解:
那线段树维护区间的最大斜率和斜率最长上升子序列的长度;
甚至建树都不需要;
唯一的问题就是update,我们好像不可以O(1)合并。
我们把一个序列分为左右两端记为L, R;
如果R的最大斜率小于L的最大斜率,那么有区间直接就不用考虑了;
如果R的最大斜率大于L的最大斜率,那么我们二分R区间,像这样递归下去;
 

 
Code:
#include <iostream>
#include <cstdio>
using namespace std; struct segment
{
int len;
long double mx;
}t[];
#define ls(o) o<<1
#define rs(o) o<<1|1
#define mx(o) t[o].mx
#define len(o) t[o].len inline int count(int l, int r, int o, long double hi)
{
if (l == r) return mx(o) > hi;
int mid = l + r >> ;
if (mx(ls(o)) <= hi) return count(mid + , r, rs(o), hi);
return len(o) - len(ls(o)) + count(l, mid, ls(o), hi);
} inline void change(int l, int r, int o, int to, long double k)
{
if (l == r)
{
len(o) = ;
mx(o) = k;
return ;
}
int mid = l + r >> ;
if (to <= mid) change(l, mid, ls(o), to, k);
else change(mid + , r, rs(o), to, k);
mx(o) = max(mx(ls(o)), mx(rs(o)));
len(o) = len(ls(o)) + count(mid + , r, rs(o), mx(ls(o)));
} int main()
{
int n, m;
scanf("%d%d", &n, &m);
while (m--)
{
int x, y;
scanf("%d%d", &x, &y);
change(, n, , x, (long double)y / x);
printf("%d\n", len());
}
return ;
}

[BZOJ29957] 楼房重建 - 线段树的更多相关文章

  1. bzoj 2957: 楼房重建 线段树

    2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 小A的楼房外有一大片施 ...

  2. luogu P4198 楼房重建——线段树

    题目大意: 小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线 ...

  3. bzoj 2957: 楼房重建 ——线段树

    Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...

  4. [Luogu P4198]楼房重建(线段树)

    题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个 ...

  5. bzoj2957 楼房重建——线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2957 线段树维护两个值:cnt 能看到的最多楼房数: mx 最大斜率数: 对于一段区间,从左 ...

  6. bzoj 2957 楼房重建 (线段树+思路)

    链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2957 思路: 用分块可以很简单的过掉,但是这道题也可以用线段树写. 分类讨论左区间最大值对 ...

  7. 洛谷P4198 楼房重建(线段树)

    题意 题目链接 Sol 别问我为什么发两遍 就是为了骗访问量 这个题的线段树做法,,妙的很 首先一个显然的结论:位置\(i\)能被看到当且仅当\(\frac{H_k}{k} < \frac{H_ ...

  8. BZOJ 2957 楼房重建(线段树区间合并)

    一个显而易见的结论是,这种数字的值是单调递增的.我们修改一个数只会对这个数后面的数造成影响.考虑线段树划分出来的若干线段. 这里有两种情况: 1.某个线段中的最大值小于等于修改的数,那么这个线段的贡献 ...

  9. [BZOJ2957] 楼房重建 (线段树,递归)

    题目链接 Solution 经典的一道线段树题,难点在于如何合并节点. 由于题目要求直线要求不相交,则斜率均大于前面的点即为答案. 所以以斜率为权值. 考虑线段树每一个节点维护两个值: \(Max\) ...

随机推荐

  1. 浅谈PHP反序列化漏洞原理

    序列化与反序列化 序列化用途:方便于对象在网络中的传输和存储 0x01 php反序列化漏洞 在PHP应用中,序列化和反序列化一般用做缓存,比如session缓存,cookie等. 常见的序列化格式: ...

  2. tlc549

    #include <reg51.h> #include "TLC549.c" code uchar seven_seg[] = {0xc0, 0xf9, 0xa4, 0 ...

  3. jmeter 遍历数据库

  4. 001: html基础标签

    一:浏览器内核(理解) 序言: 1:web标准 主要包括结构(Structure).表现(Presentation)和行为(Behavior)三个方面. 2:常见标签 2.1:HTML head bo ...

  5. 32 (OC)* keyChain的本质

    1:它是一个sqlite数据库,其保存的所有数据都是加密过的. 2:Keychain是加密规则(key)的集合.每个规则必须含有以下三个要素:认证算法.认证密钥(加密字符串).规则的时间. 3:key ...

  6. .NET Core 获取请求类容(body)

    .Net Core 对于body多次读取,开放了一个参数EnableRewind(),该参数在第一次读取body之前开启,之后body信息可以多次读取:core时代取消了之前的stream.posit ...

  7. 百度脑图-离线版(支持Linux、Mac、Win)

    免费好用的思维导图软件(在线版) 离线版:桌面版脑图是基于百度脑图的本地化版本,帮助你在没有互联网环境的情况下,依然可以使用脑图工具. 百度脑图帮助你进行思维导图,可以运用于学习.写作.沟通.演讲.管 ...

  8. javascript数组/对象数组的深浅拷贝问题

    一.问题描述 在项目里的一个报名页面需要勾选两条信息(信息一和信息二),由于信息一和信息二所拥有的数据是一致的,所以后台只返回了一个对象数组,然后在前台设置了两个List数组来接收并加以区分.原型如下 ...

  9. 性能测试瓶颈判断(LR&Windowns)

    性能测试瓶颈判断(LR&Windowns) 一.判断CPU瓶颈(Processor) 1, %processor time 如果该值持续超过95%,表明瓶颈是CPU.可以考虑增加一个处理器或换 ...

  10. 为什么不使用SOAP进行点对点联系,而使用ESB呢

    图片截至: https://www.zhihu.com/question/29475224