2019.10.24 CSP%你赛第二场d1t3
题目描述 Description
精灵心目中亘古永恒的能量核心崩溃的那一刻,Bzeroth 大陆的每个精灵都明白,他们的家园已经到了最后的时刻。
就在这危难关头,诸神天降神谕,传下最终兵器——潘少拉魔盒。然而当精灵们准备打开魔盒时,魔盒的守护灵出现在精灵们面前:“如果你们想要拯救世界,必须要先解决这个困难的问题:定义一个 N 阶数列 A 为神奇数列当且仅当对所有2≤i≤N−1 ,都有 Ai−1+Ai+1≥2×Ai。现在有一个N阶正整数列B ,请计算将 B 数列均匀随机打乱之后,得到的数列是神奇数列的概率 P 。你只需要输出P×(N!)mod998244353 的结果即可。(显然 P×(N!) 一定是个整数)。”
输入描述 Input Description
第一行为 1 个正整数 N。
第二行为 N 个正整数 Ai。
输出描述 Output Description
输出 P×(N!)mod998244353 的结果。
样例输入 Sample Input
4
1 2 1 3
样例输出 Sample Output
8
数据范围及提示 Data Size & Hint
对于 50%的数据:3 ≤ N ≤ 10。
对于 80%的数据:3 ≤ N ≤ 20。
对于 100%的数据:3 ≤ N ≤ 40,1≤Ai≤109 。
容易知道,这个题实际上是想让我们求给定的集合能够拼成多少个神奇数列。
经过推一波式子,我们可以知道a[i+1]-a[i]>=a[i]-a[i-1],所以它的差分序列单调递增,即其为一个下凸函数。。
因此,对于一个神奇数列,满足它一定是一个下凸函数。
考虑在这个函数上进行dp:
对于一个区间dp[i][k],表示区间最左端取值为a[i],最右端取值为a[k],则进行转移时每次往左端或右端放入一个点。
但是由于刚才的式子,我们必须记录端点之前的位置的取值,所以我们用dp[i][j][k][l]表示某个下凸函数的一段区间最左端取值为a[i],a[j],最右端取值为a[l],a[k]的神奇序列个数。
考虑将原来的集合排序,所以易知下凸函数的顶点一定是整个集合的最小值。
由此,我们每次考虑放入一个新值a[pos]满足pos=max(i,k)+1,原因是排好序的序列单调递增,又因为a[i],a[k]一定含有当前区间值最大的点(因为是下凸函数),所以我们只需要取二者下标最大值+1作为新值下标。所以可以用刚才的方法检验是否答案合法。
上代码:
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long LL;
#define mem(a,b) memset(a,b,sizeof(a))
typedef pair<int,int> PII;
typedef pair<int,PII> PIP;
const int MOD=,maxn=;
inline int read()
{
int x=,f=;char c=getchar();
while(!isdigit(c)){if(c=='-')f=-;c=getchar();}
while(isdigit(c)){x=x*+c-'';c=getchar();}
return x*f;
}
int n,a[maxn],sum=,jc[maxn],dp[maxn][maxn][maxn][maxn],ans;
int main()
{
n=read();
jc[]=;
for(int i=;i<=n;i++)a[i]=read(),jc[i]=((LL)jc[i-]*(LL)i)%MOD;//阶乘预处理
sort(a+,a+n+);
for(int i=;i<=n;i++)
{
if(a[i]!=a[i-])break;
sum++;
}//取出区间最小值
for(int i=sum+;i<=n;i++)a[i-sum+]=a[i];//把其它最小值扔到后面
dp[][][][]=;
n=n-sum+;//去掉与最小值相同的值
for(int i=;i<=n;i++)
for(int j=;j<i;j++)
for(int k=;k<=n;k++)
for(int l=;l<k;l++)
{
int pos=max(i,k)+;//找到新加入的数
if(pos==n+){ans=(ans+dp[i][j][k][l])%MOD;continue;}//如果整个下凸函数已经构成了长度为n的区间
if(*a[i]<=a[pos]+a[j] || i==)dp[pos][i][k][l]=(dp[pos][i][k][l]+dp[i][j][k][l])%MOD;//检查i端是否合法
if(*a[k]<=a[pos]+a[l] || k==)dp[i][j][pos][k]=(dp[i][j][pos][k]+dp[i][j][k][l])%MOD;//检查k端是否合法
}
printf("%d\n",((LL)ans*(LL)jc[sum])%MOD);//因为最小值一共有sum个取值,所以这sum个取值进行全排列再乘以答案即可
return ;
}
2019.10.24 CSP%你赛第二场d1t3的更多相关文章
- 2019.10.26 CSP%您赛第三场
\(CSP\)凉心模拟^_^ --题源\(lqx.lhc\)等各位蒟蒻 题目名称 比赛 传递消息 开关灯 源文件名 \(competition.cpp\) \(message.cpp\) \(ligh ...
- 2019.10.28 CSP%您赛第四场t3
我写不动前两个了. 原谅一下. ____________________________________________________________________________________ ...
- 2019.10.29 CSP%您赛第四场t2
我太菜了我竟然不会分层图最短路 ____________________________________________________________________________________ ...
- Contest1592 - 2018-2019赛季多校联合新生训练赛第二场(部分题解)
Contest1592 - 2018-2019赛季多校联合新生训练赛第二场 D 10248 修建高楼(模拟优化) H 10252 组装玩具(贪心+二分) D 传送门 题干 题目描述 C 市有一条东西走 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- 可持久化线段树的学习(区间第k大和查询历史版本的数据)(杭电多校赛第二场1011)
以前我们学习了线段树可以知道,线段树的每一个节点都储存的是一段区间,所以线段树可以做简单的区间查询,更改等简单的操作. 而后面再做有些题目,就可能会碰到一种回退的操作.这里的回退是指回到未做各种操作之 ...
- 2019 计蒜之道 初赛 第二场 B. 百度AI小课堂-上升子序列(简单) ( 实现)
题目背景 91029102 年 99 月 22 日,百度在 X 市 XX 中学举办的第一场 AI 知识小课堂大获好评!同学们对矩阵的掌握非常棒. 今天的 AI 知识小课堂的第二场开讲啦.本场 AI ...
- 2019杭电多校赛第九场 Rikka with Mista
Problem Description Rikka is a fervent fan of JoJo's Bizarre Adventure. As the last episode of Golde ...
- 2019 HDU 多校赛第二场 HDU 6598 Harmonious Army 构造最小割模型
题意: 有n个士兵,你可以选择让它成为战士还是法师. 有m对关系,u和v 如果同时为战士那么你可以获得a的权值 如果同时为法师,你可以获得c的权值, 如果一个为战士一个是法师,你可以获得b的权值 问你 ...
随机推荐
- [c++] 面试题之犄角旮旯 第壹章
记录C/C++语言相关的问题. 算法可视化:https://visualgo.net/en <data structure and algorithm in c++> By Adam 有免 ...
- 《HelloGitHub》第 42 期
兴趣是最好的老师,HelloGitHub 就是帮你找到兴趣! 简介 分享 GitHub 上有趣.入门级的开源项目. 这是一个面向编程新手.热爱编程.对开源社区感兴趣 人群的月刊,月刊的内容包括:各种编 ...
- 基于操作系统原理的Linux 的基本操作和常用命令的使用
一.实验目的 1.学会不同Linux用户登录的方法. 2.掌握常用Linux命令的使用方法. 3.了解Linux命令中参数选项的用法和作用. 二.实验内容 1. 文件操作命令 (1) 查看文件与目录 ...
- hadoop集群单点配置
=================== =============================== ----------------hadoop集群搭建 --------------------- ...
- 23种设计模式之装饰器模式(Decorator Pattern)
装饰器模式(Decorator Pattern) 允许向一个现有的对象添加新的功能,同时又不改变其结构.这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装. 这种模式创建了一个装饰类,用来包 ...
- go 学习笔记之10 分钟简要理解 go 语言闭包技术
闭包是主流编程语言中的一种通用技术,常常和函数式编程进行强强联合,本文主要是介绍 Go 语言中什么是闭包以及怎么理解闭包. 如果读者对于 Go 语言的闭包还不是特别清楚的话,可以参考上一篇文章 go ...
- mysql 遍历方式
mysql遍历方式可以使用while,loop和repeat来实现,示例如下: BEGIN ; # WHILE DO ; END WHILE; # SELECT i; # LOOP optLoop:L ...
- java8 base64使用
java 1.8中引入了Base64,不在需要引入第三方库就可以使用base64了. 在需要用到base64进行加密解密的时候就可以使用了 String text = "base64 in ...
- Springboot2.x整合RabbitMQ
1.RabbitMQ介绍 可参照RabbitMQ笔记 2.接入配置 pom依赖 <!--amqp依赖--> <dependency> <groupId>org.sp ...
- 给定一个公式字符串用java进行拆解并计算结果
需求很简单,给定一个字符串形式的公式规则,用java代码进行拆解,并能计算出结果. ♦考虑字符串中数字格式[整数.小数点] ♦考虑字符串中运算符[+-*/()] ♦考虑空格.运算规则[被0除] 以下是 ...