在本文中,我们将从零开始,教您如何构建第一个Apache Flink (以下简称Flink)应用程序。

开发环境准备

Flink 可以运行在 Linux, Max OS X, 或者是 Windows 上。为了开发 Flink 应用程序,在本地机器上需要有 Java 8.x 和 maven 环境。

如果有 Java 8 环境,运行下面的命令会输出如下版本信息:

$ java -versionjava version "1.8.0_65"
Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)

如果有 maven 环境,运行下面的命令会输出如下版本信息:

$ mvn -version
Apache Maven 3.5.4 (1edded0938998edf8bf061f1ceb3cfdeccf443fe; 2018-06-18T02:33:14+08:00)
Maven home: /Users/wuchong/dev/maven
Java version: 1.8.0_65, vendor: Oracle Corporation, runtime: /Library/Java/JavaVirtualMachines/jdk1.8.0_65.jdk/Contents/Home/jre
Default locale: zh_CN, platform encoding: UTF-8
OS name: "mac os x", version: "10.13.6", arch: "x86_64", family: "mac"

另外我们推荐使用 ItelliJ IDEA (社区免费版已够用)作为 Flink 应用程序的开发 IDE。Eclipse 虽然也可以,但是 Eclipse 在 Scala 和 Java 混合型项目下会有些已知问题,所以不太推荐 Eclipse。下一章节,我们会介绍如何创建一个 Flink 工程并将其导入 ItelliJ IDEA。

创建 Maven 项目

我们将使用 Flink Maven Archetype 来创建我们的项目结构和一些初始的默认依赖。在你的工作目录下,运行如下命令来创建项目:

mvn archetype:generate \
-DarchetypeGroupId=org.apache.flink \
-DarchetypeArtifactId=flink-quickstart-java \
-DarchetypeVersion=1.6.1 \
-DgroupId=my-flink-project \
-DartifactId=my-flink-project \
-Dversion=0.1 \
-Dpackage=myflink \
-DinteractiveMode=false

你可以编辑上面的 groupId, artifactId, package 成你喜欢的路径。使用上面的参数,Maven 将自动为你创建如下所示的项目结构:

$ tree my-flink-project
my-flink-project
├── pom.xml
└── src
└── main
├── java
│ └── myflink
│ ├── BatchJob.java
│ └── StreamingJob.java
└── resources
└── log4j.properties

我们的 pom.xml 文件已经包含了所需的 Flink 依赖,并且在 src/main/java 下有几个示例程序框架。接下来我们将开始编写第一个 Flink 程序。

编写 Flink 程序

启动 IntelliJ IDEA,选择 “Import Project”(导入项目),选择 my-flink-project 根目录下的 pom.xml。根据引导,完成项目导入。

在 src/main/java/myflink 下创建 SocketWindowWordCount.java 文件:

package myflink;

public class SocketWindowWordCount {

    public static void main(String[] args) throws Exception {

    }
}

现在这程序还很基础,我们会一步步往里面填代码。注意下文中我们不会将 import 语句也写出来,因为 IDE 会自动将他们添加上去。在本节末尾,我会将完整的代码展示出来,如果你想跳过下面的步骤,可以直接将最后的完整代码粘到编辑器中。

Flink 程序的第一步是创建一个 StreamExecutionEnvironment 。这是一个入口类,可以用来设置参数和创建数据源以及提交任务。所以让我们把它添加到 main 函数中:

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

下一步我们将创建一个从本地端口号 9000 的 socket 中读取数据的数据源:

DataStream text = env.socketTextStream("localhost", 9000, "\n");

这创建了一个字符串类型的 DataStream。DataStream 是 Flink 中做流处理的核心 API,上面定义了非常多常见的操作(如,过滤、转换、聚合、窗口、关联等)。在本示例中,我们感兴趣的是每个单词在特定时间窗口中出现的次数,比如说5秒窗口。为此,我们首先要将字符串数据解析成单词和次数(使用Tuple2表示),第一个字段是单词,第二个字段是次数,次数初始值都设置成了1。我们实现了一个 flatmap 来做解析的工作,因为一行数据中可能有多个单词。

DataStream> wordCounts = text
.flatMap(new FlatMapFunction>() {
@Override
public void flatMap(String value, Collector> out) {
for (String word : value.split("\\s")) {
out.collect(Tuple2.of(word, 1));
}
}
});

接着我们将数据流按照单词字段(即0号索引字段)做分组,这里可以简单地使用 keyBy(int index) 方法,得到一个以单词为 key 的Tuple2数据流。然后我们可以在流上指定想要的窗口,并根据窗口中的数据计算结果。在我们的例子中,我们想要每5秒聚合一次单词数,每个窗口都是从零开始统计的:

DataStream> windowCounts = wordCounts
.keyBy(0)
.timeWindow(Time.seconds(5))
.sum(1);

第二个调用的 .timeWindow() 指定我们想要5秒的翻滚窗口(Tumble)。第三个调用为每个key每个窗口指定了sum聚合函数,在我们的例子中是按照次数字段(即1号索引字段)相加。得到的结果数据流,将每5秒输出一次这5秒内每个单词出现的次数。

最后一件事就是将数据流打印到控制台,并开始执行:

windowCounts.print().setParallelism(1);
env.execute("Socket Window WordCount");

最后的 env.execute 调用是启动实际Flink作业所必需的。所有算子操作(例如创建源、聚合、打印)只是构建了内部算子操作的图形。只有在execute()被调用时才会在提交到集群上或本地计算机上执行。

下面是完整的代码,部分代码经过简化:

package myflink;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector; public class SocketWindowWordCount { public static void main(String[] args) throws Exception { // 创建 execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 通过连接 socket 获取输入数据,这里连接到本地9000端口,如果9000端口已被占用,请换一个端口
DataStream text = env.socketTextStream("localhost", 9000, "\n"); // 解析数据,按 word 分组,开窗,聚合
DataStream> windowCounts = text
.flatMap(new FlatMapFunction>() {
@Override
public void flatMap(String value, Collector> out) {
for (String word : value.split("\\s")) {
out.collect(Tuple2.of(word, 1));
}
}
})
.keyBy(0)
.timeWindow(Time.seconds(5))
.sum(1); // 将结果打印到控制台,注意这里使用的是单线程打印,而非多线程
windowCounts.print().setParallelism(1); env.execute("Socket Window WordCount");
}
}

运行程序

要运行示例程序,首先我们在终端启动 netcat 获得输入流:

nc -lk 9000

如果是 Windows 平台,可以通过 https://nmap.org/ncat/ 安装 ncat 然后运行:

ncat -lk 9000

然后直接运行SocketWindowWordCount的 main 方法。

只需要在 netcat 控制台输入单词,就能在 SocketWindowWordCount 的输出控制台看到每个单词的词频统计。如果想看到大于1的计数,请在5秒内反复键入相同的单词。

关注微信公众号《大数据技术进阶》,从点到面,带你了解大数据技术架构及应用 !

Apache Flink 入门示例demo的更多相关文章

  1. apache flink 入门

    配置环境 包括 JAVA_HOME jobmanager.rpc.address jobmanager.heap.mb 和 taskmanager.heap.mb taskmanager.number ...

  2. Apache activemq入门示例(maven项目)

    http://outofmemory.cn/java/mq/apache-activemq-demo

  3. Building real-time dashboard applications with Apache Flink, Elasticsearch, and Kibana

    https://www.elastic.co/cn/blog/building-real-time-dashboard-applications-with-apache-flink-elasticse ...

  4. Apache Flink 零基础入门(转)

    这是一份很好的 Apache Flink 零基础入门教程. Apache Flink 零基础入门(一&二):基础概念解析 Apache Flink 零基础入门(三):开发环境搭建和应用的配置. ...

  5. 1.【转】spring MVC入门示例(hello world demo)

    1. Spring MVC介绍 Spring Web MVC是一种基于Java的实现了Web MVC设计模式的请求驱动类型的轻量级Web框架,即使用了MVC架构模式的思想,将web层进行职责解耦,基于 ...

  6. 【转】spring MVC入门示例(hello world demo)

    部分内容来自网络:<第二章 Spring MVC入门 —— 跟开涛学SpringMVC > 1. Spring MVC介绍 Spring Web MVC是一种基于Java的实现了Web M ...

  7. Flink入门(一)——Apache Flink介绍

    Apache Flink是什么? ​ 在当代数据量激增的时代,各种业务场景都有大量的业务数据产生,对于这些不断产生的数据应该如何进行有效的处理,成为当下大多数公司所面临的问题.随着雅虎对hadoop的 ...

  8. Apache Flink:详细入门

    Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能.现有的开源计算 ...

  9. Flink入门(五)——DataSet Api编程指南

    Apache Flink Apache Flink 是一个兼顾高吞吐.低延迟.高性能的分布式处理框架.在实时计算崛起的今天,Flink正在飞速发展.由于性能的优势和兼顾批处理,流处理的特性,Flink ...

随机推荐

  1. JavaScript之时间对象Date

    时间是物理学七大常量之一.生活中记录时间有两种方式(或者说有两种计时系统):GMT(格林尼治时间)和UTC(协调世界时间). 一 创建Date对象 JS中的Date对象只能通过new关键字创建. va ...

  2. Python学习-函数,函数参数,作用域

    一.函数介绍 函数定义:函数时组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 我们已经知道python提供了许多内建函数,print(), type()等.我们也可以自己创建函数,这被叫 ...

  3. 免费下载 80多种的微软推出入门级 .NET视频

    .NET Core 3.0发布视频系列中宣布了80多个新的免费视频,这些视频同时放在Microsoft的Channel 9 和youtube上面. 在线观看由于跨洋网络效果不太好,下载到机器上慢慢上是 ...

  4. Mycat 配置文件schema.xml

    1.介绍 schema.xml 作为 MyCat 中重要的配置文件之一,管理着 MyCat 的逻辑库.表.分片规则. DataNode 以及 DataSource. 2.schema相关标签 sche ...

  5. Shell之三剑客

    目录 Shell之三剑客 参考 Grep Sed Awk Shell之三剑客

  6. python 关于excel弹窗——请注意,您的文档的部分内容可能包含了文档检查器无法删除的个人信息解决方法

    参考https://www.cnblogs.com/Jacklovely/p/6582732.html 这个问题的原因是由于工作簿包含宏.ActiveX控件等内容, 而Excel被设置为在保存文件时自 ...

  7. 死磕 java线程系列之自己动手写一个线程池

    欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. (手机横屏看源码更方便) 问题 (1)自己动手写一个线程池需要考虑哪些因素? (2)自己动手写 ...

  8. 【Tomcat】tomcat7 设置成系统服务启动

    1.启动cmd 2.cd C:\Program Files\tomcat7\bin 3.service.bat install 4.打开tomcat7w.exe可以启动管理服务

  9. .Net Core上传文件到服务器

    /// <summary> /// 上传文件 /// </summary> /// <returns></returns> [HttpPost(&quo ...

  10. Tomcat部署项目的三个方法

    所需软件安装 要想在Tomcat中部署项目前提是先要搭建好Tomcat,搭建Tomcat就离不开以下软件包的安装配置,本次演示使用Linux平台 1.JDK软件包 JDK是一切java应用程序的基础, ...