Table of contents

  1. Introduction

  2. Survey papers

  3. Benchmark datasets

  4. Fine-grained image recognition

    1. Fine-grained recognition by localization-classification subnetworks

    2. Fine-grained recognition by end-to-end feature encoding

    3. Fine-grained recognition with external information

      1. Fine-grained recognition with web data / auxiliary data

      2. Fine-grained recognition with multi-modality data

      3. Fine-grained recognition with humans in the loop

  5. Fine-grained image retrieval

    1. Unsupervised with pre-trained models

    2. Supervised with metric learning

  6. Fine-grained image generation

    1. Generating from fine-grained image distributions

    2. Generating from text descriptions

  7. Future directions of FGIA

    1. Automatic fine-grained models

    2. Fine-grained few shot learning

    3. Fine-grained hashing

    4. FGIA within more realistic settings

  8. Leaderboard

1. Introduction


This homepage lists some representative papers/codes/datasets all about deep learning based fine-grained image, including fine-grained image recognition, fine-grained image retrieval, fine-grained image generation, etc. If you have any questions, please feel free to leave message.

2. Survey papers


3. Benchmark datasets


Summary of popular fine-grained image datasets. Note that ‘‘BBox’’ indicates whether this dataset provides object bounding box supervisions. ‘‘Part anno.’’ means providing the key part localizations. ‘‘HRCHY’’ corresponds to hierarchical labels. ‘‘ATR’’ represents the attribute labels (e.g., wing color, male, female, etc). ‘‘Texts’’ indicates whether fine-grained text descriptions of images are supplied.

Dataset name Year Meta-class  images  categories BBox Part anno. HRCHY ATR Texts
Oxford flower 2008 Flowers 8,189 102        
CUB200 2011 Birds 11,788 200  
Stanford Dog 2011 Dogs 20,580 120        
Stanford Car 2013 Cars 16,185 196        
FGVC Aircraft 2013 Aircrafts 10,000 100      
Birdsnap 2014 Birds 49,829 500    
NABirds 2015 Birds 48,562 555      
DeepFashion 2016 Clothes 800,000 1,050    
Fru92 2017 Fruits 69,614 92        
Veg200 2017 Vegetable 91,117 200        
iNat2017 2017 Plants & Animals 859,000 5,089      
RPC 2019 Retail products 83,739 200      

4. Fine-grained image recognition


Fine-grained recognition by localization-classification subnetworks

Fine-grained recognition by end-to-end feature encoding

5. Fine-grained recognition with external information

Fine-grained recognition with web data / auxiliary data

Fine-grained recognition with multi-modality data

Fine-grained recognition with humans in the loop

5. Fine-grained image retrieval


Unsupervised with pre-trained models

Supervised with metric learning

6. Fine-grained image generation


Generating from fine-grained image distributions

Generating from text descriptions

7. Future directions of FGIA


Fine-grained few shot learning

FGIA within more realistic settings

8. Leaderboard


The section is being continually updated. Since CUB200-2011 is the most popularly used fine-grained dataset, we list the fine-grained recognition leaderboard by treating it as the test bed.

Method Publication BBox? Part? External information? Base model Image resolution Accuracy
PB R-CNN ECCV 2014       Alex-Net 224x224 73.9%
MaxEnt NIPS 2018       GoogLeNet TBD 74.4%
PB R-CNN ECCV 2014     Alex-Net 224x224 76.4%
PS-CNN CVPR 2016   CaffeNet 454x454 76.6%
MaxEnt NIPS 2018       VGG-16 TBD 77.0%
Mask-CNN PR 2018     Alex-Net 448x448 78.6%
PC ECCV 2018       ResNet-50 TBD 80.2%
DeepLAC CVPR 2015   Alex-Net 227x227 80.3%
MaxEnt NIPS 2018       ResNet-50 TBD 80.4%
Triplet-A CVPR 2016   Manual labour GoogLeNet TBD 80.7%
Multi-grained ICCV 2015     WordNet etc. VGG-19 224x224 81.7%
Krause et al. CVPR 2015     CaffeNet TBD 82.0%
Multi-grained ICCV 2015   WordNet etc. VGG-19 224x224 83.0%
TS CVPR 2016       VGGD+VGGM 448x448 84.0%
Bilinear CNN ICCV 2015       VGGD+VGGM 448x448 84.1%
STN NIPS 2015       GoogLeNet+BN 448x448 84.1%
LRBP CVPR 2017       VGG-16 224x224 84.2%
PDFS CVPR 2016       VGG-16 TBD 84.5%
Xu et al. ICCV 2015 Web data CaffeNet 224x224 84.6%
Cai et al. ICCV 2017       VGG-16 448x448 85.3%
RA-CNN CVPR 2017       VGG-19 448x448 85.3%
MaxEnt NIPS 2018       Bilinear CNN TBD 85.3%
PC ECCV 2018       Bilinear CNN TBD 85.6%
CVL CVPR 2017     Texts VGG TBD 85.6%
Mask-CNN PR 2018     VGG-16 448x448 85.7%
GP-256 ECCV 2018       VGG-16 448x448 85.8%
KP CVPR 2017       VGG-16 224x224 86.2%
T-CNN IJCAI 2018       ResNet 224x224 86.2%
MA-CNN ICCV 2017       VGG-19 448x448 86.5%
MaxEnt NIPS 2018       DenseNet-161 TBD 86.5%
DeepKSPD ECCV 2018       VGG-19 448x448 86.5%
OSME+MAMC ECCV 2018       ResNet-101 448x448 86.5%
StackDRL IJCAI 2018       VGG-19 224x224 86.6%
DFL-CNN CVPR 2018       VGG-16 448x448 86.7%
PC ECCV 2018       DenseNet-161 TBD 86.9%
KERL IJCAI 2018     Attributes VGG-16 224x224 87.0%
HBP ECCV 2018       VGG-16 448x448 87.1%
Mask-CNN PR 2018     ResNet-50 448x448 87.3%
DFL-CNN CVPR 2018       ResNet-50 448x448 87.4%
NTS-Net ECCV 2018       ResNet-50 448x448 87.5%
HSnet CVPR 2017   GoogLeNet+BN TBD 87.5%
MetaFGNet ECCV 2018     Auxiliary data ResNet-34 TBD 87.6%
DCL CVPR 2019       ResNet-50 448x448 87.8%
TASN CVPR 2019       ResNet-50 448x448 87.9%
Ge et al. CVPR 2019       GoogLeNet+BN Shorter side is 800 px 90.4%

Fine-Grained(细粒度) Image – Papers, Codes and Datasets的更多相关文章

  1. Matlab Codes and Datasets for Feature Learning

    Matlab Codes and Datasets for Feature Learning 浙江大学CAiDeng提供的Matlab特征学习Code.

  2. CVPR 2015 papers

    CVPR2015 Papers震撼来袭! CVPR 2015的文章可以下载了,如果链接无法下载,可以在Google上通过搜索paper名字下载(友情提示:可以使用filetype:pdf命令). Go ...

  3. KDD2015,Accepted Papers

    Accepted Papers by Session Research Session RT01: Social and Graphs 1Tuesday 10:20 am–12:00 pm | Lev ...

  4. HDFS 细粒度锁优化,FusionInsight MRS有妙招

    摘要:华为云FusionInsight MRS通过FGL对HDFS NameNode锁机制进行优化,有效提升了NameNode的读写吞吐量,从而能够支持更多数据,更多业务请求访问,从而更好的支撑政企客 ...

  5. cvpr2015papers

    @http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...

  6. Official Program for CVPR 2015

    From:  http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am ...

  7. 2016CVPR论文集

    http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...

  8. CVPR2016 Paper list

    CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...

  9. Cryptographic method and system

    The present invention relates to the field of security of electronic data and/or communications. In ...

随机推荐

  1. java 队列和栈相互实现

    一.队列实现栈 public class queue2stack { public static void main(String[] args) { QS qs = new QS(); qs.pus ...

  2. Kubernetes 系列(八):搭建EFK日志收集系统

    Kubernetes 中比较流行的日志收集解决方案是 Elasticsearch.Fluentd 和 Kibana(EFK)技术栈,也是官方现在比较推荐的一种方案. Elasticsearch 是一个 ...

  3. JQuery 源码解析 · extend()详解

    前言:最近想重写一个dropdown插件,于是想到了使用jquey实现插件,于是重温了一波$.extend()的知识,然后总结了这篇笔记 正文: $.extend(src)  jQuery.exten ...

  4. 【集群监控】Docker上部署Prometheus+Alertmanager+Grafana实现集群监控

    Docker部署 下载 sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.re ...

  5. Hbase入门(五)——客户端(Java,Shell,Thrift,Rest,MR,WebUI)

    Hbase的客户端有原生java客户端,Hbase Shell,Thrift,Rest,Mapreduce,WebUI等等. 下面是这几种客户端的常见用法. 一.原生Java客户端 原生java客户端 ...

  6. Spring Cloud之Hystrix

    在微服务架构中,存在那么多的服务单元,若一个单元出现故障(由于网络原因或者自身原因),就很容易因依赖关系而引发故障的蔓延,最终导致整个系统的瘫痪,这样的架构相较传统架构更加不稳定.为了解决这样的问题, ...

  7. 【NOIP2003】传染病控制

    Description 问题背景: 近来,一种新的传染病肆虐全球.蓬莱国也发现了零星感染者,为防止该病在蓬莱国大范围流行,该国政府 决定不惜一切代价控制传染病的蔓延.不幸的是,由于人们尚未完全认识这种 ...

  8. 基于STM32F1与NRF24L01模块的SPI简单通信

    一.前言 1.简介: 本文是基于STM32F1,将数据发送至NRF模块的寄存器,并将数据重新读取,通过串口发送出来的简单SPI单通信. 2.SPI简介: 调过STM8的都已经对SPI有所了解,调法都一 ...

  9. HTML 元素居中的方法

    网址:http://www.cnblogs.com/asqq/archive/2012/04/09/2438745.html 1. 元素的定位的方法选择 :absolute . 2. 给定元素的宽和高 ...

  10. [NOIp2013] luogu P1966 火柴排队

    磕了瓶魔爪. 题目描述 你有两个长度为 NNN 的数组 a,ba,ba,b,试重新排列 aaa 数组使得S=∑i=1n(ai−bi)2S=\sum_{i=1}^{n}{(a_i-b_i)^2}S=i= ...