Fine-Grained(细粒度) Image – Papers, Codes and Datasets
Table of contents
Introduction
Survey papers
Benchmark datasets
Fine-grained image recognition
Fine-grained recognition by localization-classification subnetworks
Fine-grained recognition by end-to-end feature encoding
Fine-grained recognition with external information
Fine-grained recognition with web data / auxiliary data
Fine-grained recognition with multi-modality data
Fine-grained recognition with humans in the loop
Fine-grained image retrieval
Unsupervised with pre-trained models
Supervised with metric learning
Fine-grained image generation
Generating from fine-grained image distributions
Generating from text descriptions
Future directions of FGIA
Automatic fine-grained models
Fine-grained few shot learning
Fine-grained hashing
FGIA within more realistic settings
Leaderboard
1. Introduction
This homepage lists some representative papers/codes/datasets all about deep learning based fine-grained image, including fine-grained image recognition, fine-grained image retrieval, fine-grained image generation, etc. If you have any questions, please feel free to leave message.
2. Survey papers
A Survey on Deep Learning-based Fine-Grained Object Classification and Semantic Segmentation.
Bo Zhao, Jiashi Feng, Xiao Wu, and Shuicheng Yan. International Journal of Automation and Computing, 2017.
3. Benchmark datasets
Summary of popular fine-grained image datasets. Note that ‘‘BBox’’ indicates whether this dataset provides object bounding box supervisions. ‘‘Part anno.’’ means providing the key part localizations. ‘‘HRCHY’’ corresponds to hierarchical labels. ‘‘ATR’’ represents the attribute labels (e.g., wing color, male, female, etc). ‘‘Texts’’ indicates whether fine-grained text descriptions of images are supplied.
| Dataset name | Year | Meta-class | images |
categories |
BBox | Part anno. | HRCHY | ATR | Texts |
| Oxford flower | 2008 | Flowers | 8,189 | 102 | ![]() |
||||
| CUB200 | 2011 | Birds | 11,788 | 200 | ![]() |
![]() |
![]() |
![]() |
|
| Stanford Dog | 2011 | Dogs | 20,580 | 120 | ![]() |
||||
| Stanford Car | 2013 | Cars | 16,185 | 196 | ![]() |
||||
| FGVC Aircraft | 2013 | Aircrafts | 10,000 | 100 | ![]() |
![]() |
|||
| Birdsnap | 2014 | Birds | 49,829 | 500 | ![]() |
![]() |
![]() |
||
| NABirds | 2015 | Birds | 48,562 | 555 | ![]() |
![]() |
|||
| DeepFashion | 2016 | Clothes | 800,000 | 1,050 | ![]() |
![]() |
![]() |
||
| Fru92 | 2017 | Fruits | 69,614 | 92 | ![]() |
||||
| Veg200 | 2017 | Vegetable | 91,117 | 200 | ![]() |
||||
| iNat2017 | 2017 | Plants & Animals | 859,000 | 5,089 | ![]() |
![]() |
|||
| RPC | 2019 | Retail products | 83,739 | 200 | ![]() |
![]() |
4. Fine-grained image recognition
Fine-grained recognition by localization-classification subnetworks
Part-based R-CNNs for Fine-Grained Category Detection.
Ning Zhang, Jeff Donahue, Ross Girshick, and Trevor Darrell. ECCV, 2014. [code]
Interaction Part Mining: A Mid-Level Approach for Fine-Grained Action Recognition.
Yang Zhou, Bingbing Ni, Richang Hong, Meng Wang, and Qi Tian. CVPR, 2015.
Fine-Grained Recognition without Part Annotations.
Jonathan Krause, Hailin Jin, Jianchao Yang, and Li Fei-Fei. CVPR, 2015. [code]
The Application of Two-level Attention Models in Deep Convolutional Neural Network for Fine-grained Image Classification.
Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin Peng, and Zheng Zhang. CVPR, 2015.
Deep LAC: Deep Localization, Alignment and Classification for Fine-grained Recognition.
Di Lin, Xiaoyong Shen, Cewu Lu, and Jiaya Jia. CVPR, 2015.
Spatial Transformer Networks.
Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. NIPS, 2015. [code]
Part-Stacked CNN for Fine-Grained Visual Categorization.
Shaoli Huang, Zhe Xu, Dacheng Tao, and Ya Zhang. CVPR, 2016.
Mining Discriminative Triplets of Patches for Fine-Grained Classification.
Yaming Wang, Jonghyun Choi, Vlad I. Morariu, and Larry S. Davis. CVPR, 2016.
SPDA-CNN: Unifying Semantic Part Detection and Abstraction for Fine-grained Recognition.
Han Zhang, Tao Xu, Mohamed Elhoseiny, Xiaolei Huang, Shaoting Zhang, Ahmed Elgammal, and Dimitris Metaxas. CVPR, 2016.
Picking Deep Filter Responses for Fine-grained Image Recognition.
Xiaopeng Zhang, Hongkai, Xiong, Wengang Zhou, Weiyao Lin, and Qi Tian. CVPR, 2016.
Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-Grained Image Recognition.
Jianlong Fu, Heliang Zheng, and Tao Mei. CVPR, 2017.
Fine-Grained Recognition as HSnet Search for Informative Image Parts.
Michael Lam, Behrooz Mahasseni, and Sinisa Todorovic. CVPR, 2017.
Learning Multi-attention Convolutional Neural Network for Fine-Grained Image Recognition.
Heliang Zheng, Jianlong Fu, Tao Mei, and Jiebo Luo. ICCV, 2017. [code]
Weakly Supervised Learning of Part Selection Model with Spatial Constraints for Fine-Grained Image Classification.
Xiangteng He, and Yuxin Peng. AAAI, 2017.
Localizing by Describing: Attribute-Guided Attention Localization for Fine-Grained Recognition.
Xiao Liu, Jiang Wang, Shilei Wen, Errui Ding, and Yuanqing Lin. AAAI, 2017.
Learning to Navigate for Fine-grained Classification.
Ze Yang, Tiange Luo, Dong Wang, Zhiqiang Hu, Jun Gao, and Liwei Wang. ECCV, 2018. [code]
Multi-Attention Multi-Class Constraint for Fine-grained Image Recognition.
Ming Sun, Yuchen Yuan, Feng Zhou, and Errui Ding. ECCV, 2018. [code]
Weakly Supervised Complementary Parts Models for Fine-Grained Image Classification From the Bottom Up.
Weifeng Ge, Xiangru Lin, and Yizhou Yu. CVPR, 2019.
Fine-grained recognition by end-to-end feature encoding
Hyper-Class Augmented and Regularized Deep Learning for Fine-Grained Image Classification.
Saining Xie, Tianbao Yang, Xiaoyu Wang, and Yuanqing Lin. CVPR, 2015.
Subset Feature Learning for Fine-Grained Category Classification.
ZongYuan Ge, Christopher McCool, Conrad Sanderson, and Peter Corke. CVPR, 2015.
Bilinear CNN Models for Fine-grained Visual Recognition.
Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. ICCV, 2015. [code]
Multiple Granularity Descriptors for Fine-Grained Categorization.
Dequan Wang, Zhiqiang Shen, Jie Shao, Wei Zhang, Xiangyang Xue, and Zheng Zhang. ICCV, 2015.
Compact Bilinear Pooling.
Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. CVPR, 2016. [code]
Fine-Grained Image Classification by Exploring Bipartite-Graph Labels.
Feng Zhou, and Yuanqing Lin. CVPR, 2016. [project page]
Kernel Pooling for Convolutional Neural Networks.
Yin Cui, Feng Zhou, Jiang Wang, Xiao Liu, Yuanqing Lin, and Serge Belongie. CVPR, 2017.
Low-rank Bilinear Pooling for Fine-Grained Classification.
Shu Kong, and Charless Fowlkes. CVPR, 2017. [code]
Higher-order Integration of Hierarchical Convolutional Activations for Fine-Grained Visual Categorization.
Sijia Cai, Wangmeng Zuo, and Lei Zhang. ICCV, 2017. [code]
Learning a Discriminative Filter Bank within a CNN for Fine-grained Recognition.
Yaming Wang, Vlad I. Morariu, and Larry S. Davis. CVPR, 2018. [code]
Towards Faster Training of Global Covariance Pooling Networks by Iterative Matrix Square Root Normalization.
Peihua Li, Jiangtao Xie, Qilong Wang, and Zilin Gao. CVPR, 2018. [code]
Maximum-Entropy Fine Grained Classification.
Abhimanyu Dubey, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. NIPS, 2018.
Pairwise Confusion for Fine-Grained Visual Classification.
Abhimanyu Dubey, Otkrist Gupta, Pei Guo, Ramesh Raskar, Ryan Farrell, and Nikhil Naik. ECCV, 2018. [code]
DeepKSPD: Learning Kernel-matrix-based SPD Representation for Fine-Grained Image Recognition.
Melih Engin, Lei Wang, Luping Zhou, and Xinwang Liu. ECCV, 2018.
Hierarchical Bilinear Pooling for Fine-Grained Visual Recognition.
Chaojian Yu, Xinyi Zhao, Qi Zheng, Peng Zhang, and Xinge You. ECCV, 2018. [code]
Grassmann Pooling as Compact Homogeneous Bilinear Pooling for Fine-Grained Visual Classification.
Xing Wei, Yue Zhang, Yihong Gong, Jiawei Zhang, and Nanning Zheng. ECCV, 2018.
Looking for the Devil in the Details: Learning Trilinear Attention Sampling Network for Fine-Grained Image Recognition.
Heliang Zheng, Jianlong Fu, Zheng-Jun Zha, and Jiebo Luo. CVPR, 2019. [code]
Destruction and Construction Learning for Fine-grained Image Recognition.
Yue Chen, Yalong Bai, Wei Zhang, and Tao Mei. CVPR, 2019. [code]
5. Fine-grained recognition with external information
Fine-grained recognition with web data / auxiliary data
Augmenting Strong Supervision Using Web Data for Fine-Grained Categorization.
Zhe Xu, Shaoli Huang, Ya Zhang, and Dacheng Tao. ICCV, 2015.
Webly Supervised Learning Meets Zero-shot Learning: A Hybrid Approach for Fine-grained Classification.
Li Niu, Ashok Veeraraghavan, and Vshu Sabbarwal. CVPR, 2018.
Fine-Grained Visual Categorization using Meta-Learning Optimization with Sample Selection of Auxiliary Data.
Yabin Zhang, Hui Tang, and Kai Jia. ECCV, 2018. [code]
Learning from Web Data using Adversarial Discriminative Neural Networks for Fine-Grained Classification.
Xiaoxiao Sun, Liyi Chen, and Jufeng Yang. AAAI, 2019.
Fine-grained recognition with multi-modality data
Fine-Grained Image Classification via Combining Vision and Language.
Xiangteng He, and Yuxin Peng. CVPR, 2017.
Audio Visual Attribute Discovery for Fine-Grained Object Recognition.
Hua Zhang, Xiaochun Cao, and Rui Wang. AAAI, 2018.
Fine-grained Image Classification by Visual-Semantic Embedding.
Huapeng Xu, Guilin Qi, Jingjing Li, Meng Wang, Kang Xu, and Huan Gao. IJCAI, 2018.
Knowledge-Embedded Representation Learning for Fine-Grained Image Recognition.
Tianshui Chen, Liang Lin, Riquan Chen, Yang Wu, and Xiannan Luo. IJCAI, 2018.
Fine-grained recognition with humans in the loop
Fine-grained Categorization and Dataset Bootstrapping using Deep Metric Learning with Humans in the Loop.
Yin Cui, Feng Zhou, Yuanqing Lin, and Serge Belongie. CVPR, 2016.
5. Fine-grained image retrieval
Unsupervised with pre-trained models
Selective Convolutional Descriptor Aggregation for Fine-Grained Image Retrieval.
Xiu-Shen Wei, Jian-Hao Luo, Jianxin Wu, and Zhi-Hua Zhou. TIP, 2017. [project page]
Supervised with metric learning
Centralized Ranking Loss with Weakly Supervised Localization for Fine-Grained Object Retrieval.
Xiawu Zheng, Rongrong Ji, Xiaoshuai Sun, Yongjian Wu, Feiyue Huang, and Yanhua Yang. IJCAI, 2018.
Towards Optimal Fine Grained Retrieval via Decorrelated Centralized Loss with Normalize-Scale layer.
Xiawu Zheng, Rongrong Ji, Xiaoshuai Sun, Baochang Zhang, Yongjian Wu, and Feiyue Huang. AAAI, 2019.
6. Fine-grained image generation
Generating from fine-grained image distributions
CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training.
Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua. ICCV, 2017. [code]
FineGAN: Unsupervised Hierarchical Disentanglement for Fine-Grained Object Generation and Discovery.
Krishna Kumar Singh, Utkarsh Ojha, and Yong Jae Lee. CVPR, 2019. [code]
Generating from text descriptions
AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks.
Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong He. CVPR, 2018. [code]
7. Future directions of FGIA
Fine-grained few shot learning
Piecewise classifier mappings: Learning fine-grained learners for novel categories with few examples.
Xiu-Shen Wei, Peng Wang, Lingqiao Liu, Chunhua Shen, and Jianxin Wu. TIP, 2019.
FGIA within more realistic settings
Fine-grained Recognition in the Wild: A Multi-Task Domain Adaptation Approach.
Timnit Geru, Judy Hoffman, and Li Fei-Fei. ICCV, 2017.
The iNaturalist Species Classification and Detection Dataset.
Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and Serge Belongie. CVPR 2018.
RPC: A Large-Scale Retail Product Checkout Dataset.
Xiu-Shen Wei, Quan Cui, Lei Yang, Peng Wang, and Lingqiao Liu. arXiv: 1901.07249, 2019. [project page]
8. Leaderboard
The section is being continually updated. Since CUB200-2011 is the most popularly used fine-grained dataset, we list the fine-grained recognition leaderboard by treating it as the test bed.
| Method | Publication | BBox? | Part? | External information? | Base model | Image resolution | Accuracy |
| PB R-CNN | ECCV 2014 | Alex-Net | 224x224 | 73.9% | |||
| MaxEnt | NIPS 2018 | GoogLeNet | TBD | 74.4% | |||
| PB R-CNN | ECCV 2014 | ![]() |
Alex-Net | 224x224 | 76.4% | ||
| PS-CNN | CVPR 2016 | ![]() |
![]() |
CaffeNet | 454x454 | 76.6% | |
| MaxEnt | NIPS 2018 | VGG-16 | TBD | 77.0% | |||
| Mask-CNN | PR 2018 | ![]() |
Alex-Net | 448x448 | 78.6% | ||
| PC | ECCV 2018 | ResNet-50 | TBD | 80.2% | |||
| DeepLAC | CVPR 2015 | ![]() |
![]() |
Alex-Net | 227x227 | 80.3% | |
| MaxEnt | NIPS 2018 | ResNet-50 | TBD | 80.4% | |||
| Triplet-A | CVPR 2016 | ![]() |
Manual labour | GoogLeNet | TBD | 80.7% | |
| Multi-grained | ICCV 2015 | WordNet etc. | VGG-19 | 224x224 | 81.7% | ||
| Krause et al. | CVPR 2015 | ![]() |
CaffeNet | TBD | 82.0% | ||
| Multi-grained | ICCV 2015 | ![]() |
WordNet etc. | VGG-19 | 224x224 | 83.0% | |
| TS | CVPR 2016 | VGGD+VGGM | 448x448 | 84.0% | |||
| Bilinear CNN | ICCV 2015 | VGGD+VGGM | 448x448 | 84.1% | |||
| STN | NIPS 2015 | GoogLeNet+BN | 448x448 | 84.1% | |||
| LRBP | CVPR 2017 | VGG-16 | 224x224 | 84.2% | |||
| PDFS | CVPR 2016 | VGG-16 | TBD | 84.5% | |||
| Xu et al. | ICCV 2015 | ![]() |
![]() |
Web data | CaffeNet | 224x224 | 84.6% |
| Cai et al. | ICCV 2017 | VGG-16 | 448x448 | 85.3% | |||
| RA-CNN | CVPR 2017 | VGG-19 | 448x448 | 85.3% | |||
| MaxEnt | NIPS 2018 | Bilinear CNN | TBD | 85.3% | |||
| PC | ECCV 2018 | Bilinear CNN | TBD | 85.6% | |||
| CVL | CVPR 2017 | Texts | VGG | TBD | 85.6% | ||
| Mask-CNN | PR 2018 | ![]() |
VGG-16 | 448x448 | 85.7% | ||
| GP-256 | ECCV 2018 | VGG-16 | 448x448 | 85.8% | |||
| KP | CVPR 2017 | VGG-16 | 224x224 | 86.2% | |||
| T-CNN | IJCAI 2018 | ResNet | 224x224 | 86.2% | |||
| MA-CNN | ICCV 2017 | VGG-19 | 448x448 | 86.5% | |||
| MaxEnt | NIPS 2018 | DenseNet-161 | TBD | 86.5% | |||
| DeepKSPD | ECCV 2018 | VGG-19 | 448x448 | 86.5% | |||
| OSME+MAMC | ECCV 2018 | ResNet-101 | 448x448 | 86.5% | |||
| StackDRL | IJCAI 2018 | VGG-19 | 224x224 | 86.6% | |||
| DFL-CNN | CVPR 2018 | VGG-16 | 448x448 | 86.7% | |||
| PC | ECCV 2018 | DenseNet-161 | TBD | 86.9% | |||
| KERL | IJCAI 2018 | Attributes | VGG-16 | 224x224 | 87.0% | ||
| HBP | ECCV 2018 | VGG-16 | 448x448 | 87.1% | |||
| Mask-CNN | PR 2018 | ![]() |
ResNet-50 | 448x448 | 87.3% | ||
| DFL-CNN | CVPR 2018 | ResNet-50 | 448x448 | 87.4% | |||
| NTS-Net | ECCV 2018 | ResNet-50 | 448x448 | 87.5% | |||
| HSnet | CVPR 2017 | ![]() |
![]() |
GoogLeNet+BN | TBD | 87.5% | |
| MetaFGNet | ECCV 2018 | Auxiliary data | ResNet-34 | TBD | 87.6% | ||
| DCL | CVPR 2019 | ResNet-50 | 448x448 | 87.8% | |||
| TASN | CVPR 2019 | ResNet-50 | 448x448 | 87.9% | |||
| Ge et al. | CVPR 2019 | GoogLeNet+BN | Shorter side is 800 px | 90.4% |
Fine-Grained(细粒度) Image – Papers, Codes and Datasets的更多相关文章
- Matlab Codes and Datasets for Feature Learning
Matlab Codes and Datasets for Feature Learning 浙江大学CAiDeng提供的Matlab特征学习Code.
- CVPR 2015 papers
CVPR2015 Papers震撼来袭! CVPR 2015的文章可以下载了,如果链接无法下载,可以在Google上通过搜索paper名字下载(友情提示:可以使用filetype:pdf命令). Go ...
- KDD2015,Accepted Papers
Accepted Papers by Session Research Session RT01: Social and Graphs 1Tuesday 10:20 am–12:00 pm | Lev ...
- HDFS 细粒度锁优化,FusionInsight MRS有妙招
摘要:华为云FusionInsight MRS通过FGL对HDFS NameNode锁机制进行优化,有效提升了NameNode的读写吞吐量,从而能够支持更多数据,更多业务请求访问,从而更好的支撑政企客 ...
- cvpr2015papers
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...
- Official Program for CVPR 2015
From: http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am ...
- 2016CVPR论文集
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...
- CVPR2016 Paper list
CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...
- Cryptographic method and system
The present invention relates to the field of security of electronic data and/or communications. In ...
随机推荐
- linux查看cpu核数和内存指令
# 总核数 = 物理CPU个数 X 每颗物理CPU的核数 # 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数 # 查看物理CPU个数 cat /proc/cpuinfo| ...
- Centeos7部署Flask+Gunicorn+nginx
一.环境安装 pip3 install flask pip3 install gunicorn pip3 install nginx 二.模块介绍 1.Flask是一个使用 Python 编写的轻量级 ...
- Thinkphp5.0第五篇
原样输出 使用literal标签防止模板标签被解析 例如 {literal} {$name}<br/> {/literal} 模板单行注释 {//注释内容} 多行注释 {/*注释内容*/} ...
- 设计模式---结构型模式之适配器模式(Adapter Pattern)
适配器模式定义 将一个类的接口,转换成客户期望的另外一个接口.适配器让原本接口不兼容的类可以合作无间. 适配器模式主要有两种类型:对象适配器和类适配器. 在详细解释这两种类型时,解释部分重要角色.生活 ...
- 技术不错的Java程序员,为何面试却“屡战屡败”
为何很多有不少编程经验,技术能力不错的程序员,去心仪公司面试时却总是失败?至于失败的原因,可能很多人都没意识到过. 01想要通关面试,千万别让数据结构拖了后腿 很多公司,比如 BAT.Google.F ...
- Oracle注入之带外通信
Oracle注入之带外通信和DNSLOG注入非常相似,例如和mysql中load_file()函数实现无回显注入非常相似. 下面介绍这个技术中常用的函数和使用. 环境这里准备两台测试,一台注入点的靶机 ...
- 高精度运算略解 在struct中重载运算符
高精度 高精度,即高精度算法,属于处理大数字的数学计算方法.在一般的科学计算中,会经常算到小数点后几百位或者更多,当然也可能是几千亿几百亿的大数字. 重载运算符 运算符重载,就是对已有的运算符重新进行 ...
- opencv::直方图计算
直方图概念 上述直方图概念是基于图像像素值,其实对图像梯度.每个像素的角度.等一切图像的属性值,我们都可以建立直方图. 这个才是直方图的概念真正意义,不过是基于图像像素灰度直方图是最常见 ...
- TensorFlow2.0(9):TensorBoard可视化
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- 2.2 C语言_实现数据容器vector(排序功能)
上一节我们说到我们己经实现了一般Vector可以做到的自动扩充,告诉随机存取,那么现在我们需要完成vector的一个排序的功能. 排序算法我们网上一百度哇~~!很常见的就有8大排序算法: 1.选择排序 ...
images