Table of contents

  1. Introduction

  2. Survey papers

  3. Benchmark datasets

  4. Fine-grained image recognition

    1. Fine-grained recognition by localization-classification subnetworks

    2. Fine-grained recognition by end-to-end feature encoding

    3. Fine-grained recognition with external information

      1. Fine-grained recognition with web data / auxiliary data

      2. Fine-grained recognition with multi-modality data

      3. Fine-grained recognition with humans in the loop

  5. Fine-grained image retrieval

    1. Unsupervised with pre-trained models

    2. Supervised with metric learning

  6. Fine-grained image generation

    1. Generating from fine-grained image distributions

    2. Generating from text descriptions

  7. Future directions of FGIA

    1. Automatic fine-grained models

    2. Fine-grained few shot learning

    3. Fine-grained hashing

    4. FGIA within more realistic settings

  8. Leaderboard

1. Introduction


This homepage lists some representative papers/codes/datasets all about deep learning based fine-grained image, including fine-grained image recognition, fine-grained image retrieval, fine-grained image generation, etc. If you have any questions, please feel free to leave message.

2. Survey papers


3. Benchmark datasets


Summary of popular fine-grained image datasets. Note that ‘‘BBox’’ indicates whether this dataset provides object bounding box supervisions. ‘‘Part anno.’’ means providing the key part localizations. ‘‘HRCHY’’ corresponds to hierarchical labels. ‘‘ATR’’ represents the attribute labels (e.g., wing color, male, female, etc). ‘‘Texts’’ indicates whether fine-grained text descriptions of images are supplied.

Dataset name Year Meta-class  images  categories BBox Part anno. HRCHY ATR Texts
Oxford flower 2008 Flowers 8,189 102        
CUB200 2011 Birds 11,788 200  
Stanford Dog 2011 Dogs 20,580 120        
Stanford Car 2013 Cars 16,185 196        
FGVC Aircraft 2013 Aircrafts 10,000 100      
Birdsnap 2014 Birds 49,829 500    
NABirds 2015 Birds 48,562 555      
DeepFashion 2016 Clothes 800,000 1,050    
Fru92 2017 Fruits 69,614 92        
Veg200 2017 Vegetable 91,117 200        
iNat2017 2017 Plants & Animals 859,000 5,089      
RPC 2019 Retail products 83,739 200      

4. Fine-grained image recognition


Fine-grained recognition by localization-classification subnetworks

Fine-grained recognition by end-to-end feature encoding

5. Fine-grained recognition with external information

Fine-grained recognition with web data / auxiliary data

Fine-grained recognition with multi-modality data

Fine-grained recognition with humans in the loop

5. Fine-grained image retrieval


Unsupervised with pre-trained models

Supervised with metric learning

6. Fine-grained image generation


Generating from fine-grained image distributions

Generating from text descriptions

7. Future directions of FGIA


Fine-grained few shot learning

FGIA within more realistic settings

8. Leaderboard


The section is being continually updated. Since CUB200-2011 is the most popularly used fine-grained dataset, we list the fine-grained recognition leaderboard by treating it as the test bed.

Method Publication BBox? Part? External information? Base model Image resolution Accuracy
PB R-CNN ECCV 2014       Alex-Net 224x224 73.9%
MaxEnt NIPS 2018       GoogLeNet TBD 74.4%
PB R-CNN ECCV 2014     Alex-Net 224x224 76.4%
PS-CNN CVPR 2016   CaffeNet 454x454 76.6%
MaxEnt NIPS 2018       VGG-16 TBD 77.0%
Mask-CNN PR 2018     Alex-Net 448x448 78.6%
PC ECCV 2018       ResNet-50 TBD 80.2%
DeepLAC CVPR 2015   Alex-Net 227x227 80.3%
MaxEnt NIPS 2018       ResNet-50 TBD 80.4%
Triplet-A CVPR 2016   Manual labour GoogLeNet TBD 80.7%
Multi-grained ICCV 2015     WordNet etc. VGG-19 224x224 81.7%
Krause et al. CVPR 2015     CaffeNet TBD 82.0%
Multi-grained ICCV 2015   WordNet etc. VGG-19 224x224 83.0%
TS CVPR 2016       VGGD+VGGM 448x448 84.0%
Bilinear CNN ICCV 2015       VGGD+VGGM 448x448 84.1%
STN NIPS 2015       GoogLeNet+BN 448x448 84.1%
LRBP CVPR 2017       VGG-16 224x224 84.2%
PDFS CVPR 2016       VGG-16 TBD 84.5%
Xu et al. ICCV 2015 Web data CaffeNet 224x224 84.6%
Cai et al. ICCV 2017       VGG-16 448x448 85.3%
RA-CNN CVPR 2017       VGG-19 448x448 85.3%
MaxEnt NIPS 2018       Bilinear CNN TBD 85.3%
PC ECCV 2018       Bilinear CNN TBD 85.6%
CVL CVPR 2017     Texts VGG TBD 85.6%
Mask-CNN PR 2018     VGG-16 448x448 85.7%
GP-256 ECCV 2018       VGG-16 448x448 85.8%
KP CVPR 2017       VGG-16 224x224 86.2%
T-CNN IJCAI 2018       ResNet 224x224 86.2%
MA-CNN ICCV 2017       VGG-19 448x448 86.5%
MaxEnt NIPS 2018       DenseNet-161 TBD 86.5%
DeepKSPD ECCV 2018       VGG-19 448x448 86.5%
OSME+MAMC ECCV 2018       ResNet-101 448x448 86.5%
StackDRL IJCAI 2018       VGG-19 224x224 86.6%
DFL-CNN CVPR 2018       VGG-16 448x448 86.7%
PC ECCV 2018       DenseNet-161 TBD 86.9%
KERL IJCAI 2018     Attributes VGG-16 224x224 87.0%
HBP ECCV 2018       VGG-16 448x448 87.1%
Mask-CNN PR 2018     ResNet-50 448x448 87.3%
DFL-CNN CVPR 2018       ResNet-50 448x448 87.4%
NTS-Net ECCV 2018       ResNet-50 448x448 87.5%
HSnet CVPR 2017   GoogLeNet+BN TBD 87.5%
MetaFGNet ECCV 2018     Auxiliary data ResNet-34 TBD 87.6%
DCL CVPR 2019       ResNet-50 448x448 87.8%
TASN CVPR 2019       ResNet-50 448x448 87.9%
Ge et al. CVPR 2019       GoogLeNet+BN Shorter side is 800 px 90.4%

Fine-Grained(细粒度) Image – Papers, Codes and Datasets的更多相关文章

  1. Matlab Codes and Datasets for Feature Learning

    Matlab Codes and Datasets for Feature Learning 浙江大学CAiDeng提供的Matlab特征学习Code.

  2. CVPR 2015 papers

    CVPR2015 Papers震撼来袭! CVPR 2015的文章可以下载了,如果链接无法下载,可以在Google上通过搜索paper名字下载(友情提示:可以使用filetype:pdf命令). Go ...

  3. KDD2015,Accepted Papers

    Accepted Papers by Session Research Session RT01: Social and Graphs 1Tuesday 10:20 am–12:00 pm | Lev ...

  4. HDFS 细粒度锁优化,FusionInsight MRS有妙招

    摘要:华为云FusionInsight MRS通过FGL对HDFS NameNode锁机制进行优化,有效提升了NameNode的读写吞吐量,从而能够支持更多数据,更多业务请求访问,从而更好的支撑政企客 ...

  5. cvpr2015papers

    @http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...

  6. Official Program for CVPR 2015

    From:  http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am ...

  7. 2016CVPR论文集

    http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...

  8. CVPR2016 Paper list

    CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...

  9. Cryptographic method and system

    The present invention relates to the field of security of electronic data and/or communications. In ...

随机推荐

  1. 深度解密Go语言之反射

    目录 什么是反射 为什么要用反射 反射是如何实现的 types 和 interface 反射的基本函数 反射的三大定律 反射相关函数的使用 代码样例 未导出成员 反射的实际应用 json 序列化 De ...

  2. HTML5 相关扩展

    一.与类相关的扩展 class属性的应用极其广泛,与class的相关的操作也越来越简化,HTML5增加了 getElementsByClassName来查找元素,通过也增加了classList属性,方 ...

  3. java面试宝典2019(好东西先留着)

    java面试宝典2019 1.meta标签的作用是什么 2.ReenTrantLock可重入锁(和synchronized的区别)总结 3.Spring中的自动装配有哪些限制? 4.什么是可变参数? ...

  4. 多线程基础(主要内容转载于https://segmentfault.com/a/1190000014428190)

    进程作为资源分配的基本单位 线程作为资源调度的基本单位,是程序的执行单元,执行路径(单线程:一条执行路径,多线程:多条执行路径).是程序使用CPU的最基本单位. 线程有3个基本状态: 执行.就绪.阻塞 ...

  5. Java 学习笔记之 线程sleep方法

    线程sleep方法: 单主线程使用sleep: Main线程差了2000毫秒. public class MainSleepThread extends Thread{ @Override publi ...

  6. IDEA 学习笔记之 Java项目开发深入学习(1)

    Java项目开发深入学习(1): 定义编译输出路径: 继承以上工程配置 重新定义新的项目编译路径 添加source目录:点击添加,再点击移除: 编译项目: 常用快捷键总结: Ctrl+Space 代码 ...

  7. Android 调用 WebService

    1.WebService简介 PS:如果看完上面简介还不是很清楚的话,那么就算了,之前公司就用C#搭的一个WebService! 本节我们并不讨论如何去搭建一个WebService,我们仅仅知道如何去 ...

  8. 03 python基础作业(一)

    1.将['alex','eric',’rain’]用下划线拼接成字符串.(['alex','eric',123]呢?) li=['alex','eric','rain'] v='_'.join(li) ...

  9. maven突然报大量package does not exist(包不存在)问题

    遇到个问题,不知道原因,虽然已解决,但是扔不知道为什么,希望有大神帮忙解答下~~~不胜感激~~~ 国庆假期回来后,小伙伴发布测试服务器版本忽然发现报错,我咨询IT管理组近期并没有对服务器配置和权限做调 ...

  10. 解决:Specifying a namespace in include() without providing an app_name和XXX is not a registered namespace问题

    python3 Django 环境下,如果你遇到namespace没有注册以及在根目录下urls.py中的include方法的第二个参数namespace添加之后就出错的问题. 出错问题: 'Spec ...