1.  先来了解ConcurrentHashMap中的几个成员,当然大多数与HashMap中的相似,我们只看独有的成员

/**
* The default concurrency level for this table, used when not
* otherwise specified in a constructor.
*/
static final int DEFAULT_CONCURRENCY_LEVEL = 16; //默认的并发级别
/**
* The maximum capacity, used if a higher value is implicitly
* specified by either of the constructors with arguments. MUST
* be a power of two <= 1<<30 to ensure that entries are indexable
* using ints.
*/
static final int MAXIMUM_CAPACITY = 1 << 30; //最大容量
/**
* The minimum capacity for per-segment tables. Must be a power
* of two, at least two to avoid immediate resizing on next use
* after lazy construction.
*/
static final int MIN_SEGMENT_TABLE_CAPACITY = 2; //每个Segement中的桶的数量
/**
* The maximum number of segments to allow; used to bound
* constructor arguments. Must be power of two less than 1 << 24.
*/
static final int MAX_SEGMENTS = 1 << 16; // slightly conservative //允许的最大的Segement的数量
/**
* Mask value for indexing into segments. The upper bits of a
* key's hash code are used to choose the segment.
*/
final int segmentMask; //掩码,用来定位segements数组的位置 /**
* Shift value for indexing within segments.
*/
final int segmentShift;       //偏移量,用来确认hash值的有效位
/**
* The segments, each of which is a specialized hash table.
*/
final Segment<K,V>[] segments; //相当于多个HashMap组成的数组

  

static final class Segment<K,V> extends ReentrantLock implements Serializable {  //内部类Segment,继承了ReentrantLock,有锁的功能
/**
* The maximum number of times to tryLock in a prescan before
* possibly blocking on acquire in preparation for a locked
* segment operation. On multiprocessors, using a bounded
* number of retries maintains cache acquired while locating
* nodes.
*/
static final int MAX_SCAN_RETRIES =
Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1; /**
* The per-segment table. Elements are accessed via
* entryAt/setEntryAt providing volatile semantics.
*/
transient volatile HashEntry<K,V>[] table; //每个Segement内部都有一个table数组,相当于每个Segement都是一个HashMap transient int count; //这些参数与HashMap中的参数功能相同 transient int modCount; transient int threshold; final float loadFactor; Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
this.loadFactor = lf;
this.threshold = threshold;
this.table = tab;
} final V put(K key, int hash, V value, boolean onlyIfAbsent) { //向Segement中添加一个元素 }

2. 构造函数

  

@SuppressWarnings("unchecked")
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) //参数校验
throw new IllegalArgumentException();
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
// Find power-of-two sizes best matching arguments
int sshift = 0;        
int ssize = 1;     //计算segement数组的大小,并且为2的倍数,默认情况下concurrentyLevel为16,那么ssize也为16
while (ssize < concurrencyLevel) {
++sshift; //ssize每次进行左移运算,因此sshift可以看做是ssize参数左移的位数
ssize <<= 1;
}
     
this.segmentShift = 32 - sshift; //segement偏移量
this.segmentMask = ssize - 1; //由于ssize为2的倍数,所以sengemnt为全1的,用来定位segement数组的下标
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
      
int c = initialCapacity / ssize; //计算每个Segement中桶的数量
if (c * ssize < initialCapacity)
++c;
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
cap <<= 1;
// create segments and segments[0]
Segment<K,V> s0 = //初始化第一个segement
new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
(HashEntry<K,V>[])new HashEntry[cap]);
Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize]; //新建segements数组,并将s0赋值
UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
this.segments = ss;
}

3 . 我们来看put()方法

@SuppressWarnings("unchecked")
public V put(K key, V value) {
Segment<K,V> s;
if (value == null)            //ConcurrentHashMap中value不能为空
throw new NullPointerException();
int hash = hash(key); //获取到key的hash值
int j = (hash >>> segmentShift) & segmentMask; //定位到某个segement位置
if ((s = (Segment<K,V>)UNSAFE.getObject //从上面的构造方法中我们知道,segments数组只有0位置的segment被初始化了,因此这里需要去检测计算出的位置的segment是否被初始化
                                      由于是并发容器,所以使用UNSAFE中的方法
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
s = ensureSegment(j);
return s.put(key, hash, value, false); //将元素插入到定位的Segement中
}
final V put(K key, int hash, V value, boolean onlyIfAbsent) {   //segement中的put()方法
HashEntry<K,V> node = tryLock() ? null : //获取锁,若获取不到锁,则县创建节点并返回
scanAndLockForPut(key, hash, value);
V oldValue;
try {                               
HashEntry<K,V>[] tab = table; //之后的算法就与HashMap中相似了
int index = (tab.length - 1) & hash;
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
if (node != null)
node.setNext(first);
else
node = new HashEntry<K,V>(hash, key, value, first);
int c = count + 1;
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock(); //释放锁
}
return oldValue;
}

4. 来具体看一下SegementMask与SegmentShift这两个变量时怎么使用的?

  

     int sshift = 0;        
int ssize = 1;     //计算segement数组的大小,并且为2的倍数,默认情况下concurrentyLevel为16,那么ssize也为16
while (ssize < concurrencyLevel) {
++sshift; //ssize每次进行左移运算,因此sshift可以看做是ssize参数左移的位数
ssize <<= 1;
}
     
this.segmentShift = 32 - sshift; //segement偏移量
this.segmentMask = ssize - 1; //由于ssize为2的倍数,所以sengemnt为全1的,用来定位segement数组的下标

  上面是构造函数中计算这两个变量的代码。

  我们假设concurrencyLevel为默认值16,那么经过计算得到,ssize = 16,sshift = 4,segmentShift  = 28, segementMask = 15

  由于ssize为segements数组的大小,我们可以发现,当 n 与 segmentMask按位与时候正好可以得到<=15的数组,正是segements数组的下标。

  

 int j = (hash >>> segmentShift) & segmentMask;   //定位到某个segement位置

  而segementShift的作用在于缩小hash值的范围,我们并不需要使用hash值所有的位,通过上面的数据,当hash值右移28位后正好可以得到有效计算的位数(4位),因此上面构造函数中的sshift也

  可以表示计算segements数组时的有效位数。

ConcurrentHashMap(1.7)分析的更多相关文章

  1. Hashtable、ConcurrentHashMap源码分析

    Hashtable.ConcurrentHashMap源码分析 为什么把这两个数据结构对比分析呢,相信大家都明白.首先二者都是线程安全的,但是二者保证线程安全的方式却是不同的.废话不多说了,从源码的角 ...

  2. ConcurrentHashMap源码分析(一)

    本篇博客的目录: 前言 一:ConcurrentHashMap简介 二:ConcurrentHashMap的内部实现 三:总结 前言:HashMap很多人都熟悉吧,它是我们平时编程中高频率出现的一种集 ...

  3. ConcurrentHashMap 源码分析

    ConcurrentHashMap 源码分析 1. 前言    终于到这个类了,其实在前面很过很多次这个类,因为这个类代码量比较大,并且涉及到并发的问题,还有一点就是这个代码有些真的晦涩,不好懂.前前 ...

  4. 死磕 java集合之ConcurrentHashMap源码分析(三)

    本章接着上两章,链接直达: 死磕 java集合之ConcurrentHashMap源码分析(一) 死磕 java集合之ConcurrentHashMap源码分析(二) 删除元素 删除元素跟添加元素一样 ...

  5. ConcurrentHashMap源码分析_JDK1.8版本

    在jdk1.8中主要做了2方面的改进 改进一:取消segments字段,直接采用transient volatile HashEntry<K,V>[] table保存数据,采用table数 ...

  6. 并发-ConcurrentHashMap源码分析

    ConcurrentHashMap 参考: http://www.cnblogs.com/chengxiao/p/6842045.html https://my.oschina.net/hosee/b ...

  7. ConcurrentHashMap源码分析

    看过hashMap源码之后一直意犹未尽的感觉,挡不住我看其他的源码了.HashMap在单线程中非常好用,也不会出现什么问题,但是一到多线程就gg了,变的不灵了.我们有HashTable可以运用在多线程 ...

  8. Java并发系列[9]----ConcurrentHashMap源码分析

    我们知道哈希表是一种非常高效的数据结构,设计优良的哈希函数可以使其上的增删改查操作达到O(1)级别.Java为我们提供了一个现成的哈希结构,那就是HashMap类,在前面的文章中我曾经介绍过HashM ...

  9. ConcurrentHashMap源码分析(1.8)

    0.说明 1.ConcurrentHashMap跟HashMap,HashTable的对比 2.ConcurrentHashMap原理概览 3.ConcurrentHashMap几个重要概念 4.Co ...

  10. java基础系列之ConcurrentHashMap源码分析(基于jdk1.8)

    1.前提 在阅读这篇博客之前,希望你对HashMap已经是有所理解的,否则可以参考这篇博客: jdk1.8源码分析-hashMap:另外你对java的cas操作也是有一定了解的,因为在这个类中大量使用 ...

随机推荐

  1. SDWebImage学习之 NSCache

    1.使用SDWebImage的好处 1.异步下载(避免主线程卡死) 2.做好图片缓存(这样就不需要每次都加载网络图片) 3.解决了循环利用的问题 很容易造成内存警告

  2. python字符串的特性及相关应用

    一.字符串定义 字符串是 Python 中最常用的数据类型.用单引号(' '),双引号(" ")或者三引号(''' ''')括起来的数据称为字符串(其中,使用三引号的字符串可以横跨 ...

  3. GRPC的metadata使用

    文章目录 一.简析 1.创建metadata 2.发送metadata 3.接收metadata 二.代码举例 1.proto文件编写 2.server端编写 3.client端编写 三.实际使用举例 ...

  4. 使用 Zookeeper 的 Api 实现服务注册

    创建常量接口 com.bjsxt.constant.Constants package com.bjsxt.constant; public interface Constants { //访问Zoo ...

  5. Bless You Autocorrect!

    题目链接: https://odzkskevi.qnssl.com/0c87453efec2747f8e8a573525fd42f9?v=1533651456 题解: 这是一道Trie+BFS的题目: ...

  6. 【JS】308- 深入理解ESLint

    点击上方"前端自习课"关注,学习起来~ 本文来自于"自然醒"投稿至[前端早读课]. 小沈是一个刚刚开始工作的前端实习生,第一次进行团队开发,难免有些紧张.在导师 ...

  7. pyplot概述

            matplotlib.pyplot 是命令行风格的函数集,让matplotlib看起来像MATLAB.Each一样工作.pyplot函数能够对画布(figure)进行一些改变,例如:创 ...

  8. JS基础-事件循环机制

    从一道题浅说 JavaScript 的事件循环 原文链接: https://github.com/Advanced-Frontend/Daily-Interview-Question/issues/7 ...

  9. Java虚拟机堆和栈详细解析,以后面试再也不怕问jvm了!

    堆 Java堆是和Java应用程序关系最密切的内存空间,几乎所有的对象都放在其中,并且Java堆完全是自动化管理,通过垃圾收集机制,垃圾对象会自动清理,不需自己去释放. 根据垃圾回收机制的不同,Jav ...

  10. CSS | 圣杯布局、双飞翼布局 | 自适应三栏布局

    圣杯布局和双飞翼布局是前端工程师需要日常掌握的重要布局方式.两者的功能相同,都是为了实现一个两侧宽度固定,中间宽度自适应的三栏布局 虽然两者的实现方法略有差异,不过都遵循了以下要点: 1.两侧宽度固定 ...