【2019.8.14 慈溪模拟赛 T1】我不是!我没有!别瞎说啊!(notme)(BFS+DP)
\(IDA^*\)
说实话,这道题我一开始没想出正解,于是写了一个\(IDA^*\)。。。
但神奇的是,这个\(IDA^*\)居然连字符串长度分别为\(2500,4000\)的数据都跑得飞快,不过数据发下来之后我测了一下只有45分。
就在不断优化\(IDA^*\)的过程中,我突然就想出了正解的做法,看来以后遇事不决先暴力。
\(DP\)求解第一个询问
考虑一个\(DP\),我们设\(f_{i,j}\)表示当前在第一个字符串中是第\(i\)位,第二个字符串中是第\(j\)位的最小步数。
若记录\(nxt1_{x,0/1},nxt2_{x,0/1}\)分别表示两个字符串在\(x\)位后下一个\(0/1\)出现的位置,那么我们就可以得到这样的转移:
\]
\]
这样就能解决第一个询问了。
\(BFS\)求解第二个询问
考虑如果我们在\(DP\)的时候记录一个\(lst\)表示转移来的位置,就可以输出方案了。
但题目要求字典序最小,普通的\(DP\)或者\(DFS\)形式的\(DP\)都无法满足这一条件。
于是我们就可以想到\(BFS\)。
按照\(BFS\)的顺序进行\(DP\),我们就可以保证其必然满足字典序最小的条件了。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 4000
using namespace std;
int n,m;string s1,s2;
class DpSolver//BFS+DP
{
private:
string ans;short qx[(N+2)*(N+2)+5],qy[(N+2)*(N+2)+5],nxt1[N+5][2],nxt2[N+5][2];
short f[N+5][N+5],gx[N+5][N+5],gy[N+5][N+5];bool glst[N+5][N+5];
public:
I void Solve()
{
RI i,j,x,y,H=1,T=0,p[2];s1="%"+s1,s2="%"+s2;
for(p[0]=p[1]=n+1,i=n+1;~i;--i) nxt1[i][0]=p[0],nxt1[i][1]=p[1],p[s1[i]&1]=i;//初始化nxt1
for(p[0]=p[1]=m+1,i=m+1;~i;--i) nxt2[i][0]=p[0],nxt2[i][1]=p[1],p[s2[i]&1]=i;//初始化nxt2
for(i=0;i<=n+1;++i) for(j=0;j<=m+1;++j) f[i][j]=m+1;f[0][0]=0,qx[++T]=0,qy[T]=0;//初始化f数组和BFS队列
W(H<=T) i=qx[H],j=qy[H++],//取出队首
f[x=nxt1[i][0]][y=nxt2[j][0]]==m+1&&(qx[++T]=x,qy[T]=y),//未访问过就入队
f[i][j]+1<f[x][y]&&(f[x][y]=f[i][j]+1,gx[x][y]=i,gy[x][y]=j,glst[x][y]=0),//更新f和g
f[x=nxt1[i][1]][y=nxt2[j][1]]==m+1&&(qx[++T]=x,qy[T]=y),//未访问过就入队
f[i][j]+1<f[x][y]&&(f[x][y]=f[i][j]+1,gx[x][y]=i,gy[x][y]=j,glst[x][y]=1);//更新f和g
x=n+1,y=m+1;W(x||y) ans=(char)(glst[x][y]+48)+ans,i=gx[x][y],j=gy[x][y],x=i,y=j;//倒着找答案
cout<<ans<<endl;//输出答案
}
}D;
int main()
{
freopen("notme.in","r",stdin),freopen("notme.out","w",stdout);
cin>>s1>>s2,s1.length()>s2.length()&&(swap(s1,s2),0),n=s1.length(),m=s2.length();
return D.Solve(),0;
}
【2019.8.14 慈溪模拟赛 T1】我不是!我没有!别瞎说啊!(notme)(BFS+DP)的更多相关文章
- 【2019.8.15 慈溪模拟赛 T1】插头(plugin)(二分+贪心)
二分 首先,可以发现,最后的答案显然满足可二分性,因此我们可以二分答案. 然后,我们只要贪心,就可以验证了. 贪心 不难发现,肯定会优先选择能提供更多插座的排插,且在确定充电器个数的情况下,肯定选择能 ...
- 【2019.8.8 慈溪模拟赛 T1】开箱(chest)(暴力DP水过)
转化题意 这题目乍一看十分玄学,完全不可做. 但实际上,假设我们在原序列从小到大排序之后,选择开的宝箱编号是\(p_{1\sim Z}\),则最终答案就是: \[\sum_{i=1}^Za_{p_i} ...
- 【2019.8.9 慈溪模拟赛 T1】数论(a)(打表找规律)
莫比乌斯反演 血亏! 比赛时看到这题先写了个莫比乌斯反演,然后手造了几组数据和暴力对拍的时候发现,居然答案就是\(nm\)... 吐槽数据范围太小... 下面给上出题人对此题的解释: 原式的物理意义, ...
- 【2019.8.12 慈溪模拟赛 T1】钥匙(key)(暴力DP)
暴力\(DP\) 这题做法很多,有\(O(n^2)\)的,有\(O(n^2logn)\)的,还有徐教练的\(O(nlogn)\)的,甚至还有\(bzt\)的二分+线段树优化建图的费用流. 我懒了点,反 ...
- 【2019.8.14 慈溪模拟赛 T2】黑心老板(gamble)(2-SAT)
\(2-SAT\) 考虑每个点只能选择\(R\)或\(B\),可以看作选\(0\)或\(1\). 然后对于给出的关系式,若其中一个位置满足关系式,另两个位置就必须不满足关系式,这样就可以对于每个关系式 ...
- 2019.03.14 ZJOI2019模拟赛 解题报告
得分: \(100+100+0=200\)(\(T1\)在最后\(2\)分钟写了出来,\(T2\)在最后\(10\)分钟写了出来,反而\(T3\)写了\(4\)个小时爆\(0\)) \(T1\):风王 ...
- 【2019.7.20 NOIP模拟赛 T1】A(A)(暴搜)
打表+暴搜 这道题目,显然是需要打表的,不过打表的方式可以有很多. 我是打了两个表,分别表示每个数字所需的火柴棒根数以及从一个数字到另一个数字,除了需要去除或加入的火柴棒外,至少需要几根火柴棒. 然后 ...
- 【2019.7.25 NOIP模拟赛 T1】变换(change)(思维+大分类讨论)
几个性质 我们通过推式子可以发现: \[B⇒AC⇒AAB⇒AAAC⇒C\] \[C⇒AB⇒AAC⇒AAAB⇒B\] 也就是说: 性质一: \(B,C\)可以相互转换. 则我们再次推式子可以发现: \[ ...
- 【2019.10.7 CCF-CSP-2019模拟赛 T1】树上查询(tree)(思维)
思维 这道题应该算是一道思维题吧. 首先你要想到,既然这是一棵无根树,就要明智地选择根--以第一个黑点为根(不要像我一样习惯性以\(1\)号点为根,结果直到心态爆炸都没做出来). 想到这一点,这题就很 ...
随机推荐
- docker /var/lib/docker/aufs/mnt 目录满了怎么清理
1.创建脚本文件 vi cleandocker.sh 内容如下: #!/bin/sh echo "==================== start clean docker contai ...
- centos安装nodejs并配置生产环境,基于pm2
安装nodejs和yarn的命令: curl --silent --location https://dl.yarnpkg.com/rpm/yarn.repo | sudo tee /etc/yum. ...
- 掌握Spring REST TypeScript生成器
在优锐课的java分享中,讨论了关于Spring REST TypeScript生成器,该生成器创建反映后端模型和REST服务的模型和服务.码了很多干货,分享给大家参考学习. 我注意到网络开发人员创建 ...
- git 创建分支 提交到远程分支
git 创建分支 并 提交到远程分支 git branch 0.可以通过git branch -r 命令查看远端库的分支情况 1,从已有的分支创建新的分支(如从master分支),创建一个dev分支 ...
- Drools规则引擎-如果Fact对象参数为null如何处理
问题场景 在技术交流群(QQ:715840230)中有同学提出这样的问题: 往kiesession里面传入fact,如果不做输入检查fact里面有些字段可能是null值.但是如果在外面做输入检查,规则 ...
- Linux网络——配置网络之iproute家族命令
Linux网络——配置网络之iproute家族命令 摘要:本文主要学习了iproute家族用来配置网络的命令. ip命令 ip命令用于查看和管理IP地址.接口.路由.隧道等.用来取代ifconfig命 ...
- crm-4权限
1.rbac-优化login函数 因为login是业务逻辑 ,而rbac是个组件 ,将rbac在login的代码分离 ###初始化权限函数分离出去 rbac/service/permission fr ...
- JavaScript:for循环中let与var变量的绑定
碰到一道题: for(var i=0;i<2;i++){ setTimeout(function(){ console.log(i); },100) } //输出结果为:2 2 for(let ...
- 区块链社交APP协议分析:Qbao
- Qbao是什么 - Qbao报文情况 本节我们开始使用Qbao软件,并抓取其报文进行分析. 对APP进行协议分析抓包的一般过程是: 1.打开抓包APP进行抓包: 2.打开APP开始使用: 3.对每 ...
- 多个浏览器下应用前端JS实现一键导出excel表
自己试验了几种方法,找到一种较为全面的一种方式一键输出Excel表格,代码如下 <!DOCTYPE html> <html> <head lang="en&qu ...