三大相关系数:pearson, spearman, kendall

统计学中的三大相关性系数:pearson, spearman, kendall,他们反应的都是两个变量之间变化趋势的方向以及程度,其值范围为-1到+1。
0表示两个变量不相关,正值表示正相关,负值表示负相关,值越大表示相关性越强。
1. person correlation coefficient(皮尔森相关性系数)
皮尔逊相关系数通常用r或ρ表示,度量两变量X和Y之间相互关系(线性相关)
(1)公式
皮尔森相关性系数的值等于它们之间的协方差cov(X,Y)除以它们各自标准差的乘积(σX, σY)。
(2)数据要求
a.正态分布
它是协方差与标准差的比值,并且在求皮尔森相关性系数以后,通常还会用t检验之类的方法来进行皮尔森相关性系数检验,而t检验是基于数据呈正态分布的假设的。
b.实验数据之间的差距不能太大
比如:研究人跑步的速度与心脏跳动的相关性,如果人突发心脏病,心跳为0(或者过快与过慢),那这时候我们会测到一个偏离正常值的心跳,如果我们把这个值也放进去进行相关性分析,它的存在会大大干扰计算的结果的。
(3)实例代码
import pandas as pd
import numpy as np #原始数据
X1=pd.Series([1, 2, 3, 4, 5, 6])
Y1=pd.Series([0.3, 0.9, 2.7, 2, 3.5, 5]) X1.mean() #平均值# 3.5
Y1.mean() #2.4
X1.var() #方差#3.5
Y1.var() #2.9760000000000004 X1.std() #标准差不能为0# 1.8708286933869707
Y1.std() #标准差不能为0#1.725108692227826
X1.cov(Y1) #协方差#3.0600000000000005 X1.corr(Y1,method="pearson") #皮尔森相关性系数 #0.948136664010285
X1.cov(Y1)/(X1.std()*Y1.std()) #皮尔森相关性系数 # 0.948136664010285
2. spearman correlation coefficient(斯皮尔曼相关性系数)
斯皮尔曼相关性系数,通常也叫斯皮尔曼秩相关系数。“秩”,可以理解成就是一种顺序或者排序,那么它就是根据原始数据的排序位置进行求解
(1)公式
首先对两个变量(X, Y)的数据进行排序,然后记下排序以后的位置(X’, Y’),(X’, Y’)的值就称为秩次,秩次的差值就是上面公式中的di,n就是变量中数据的个数,最后带入公式就可求解结果。
(2)数据要求
因为是定序,所以我们不用管X和Y这两个变量具体的值到底差了多少,只需要算一下它们每个值所处的排列位置的差值,就可以求出相关性系数了
(3)实例代码
import pandas as pd
import numpy as np #原始数据
X1=pd.Series([1, 2, 3, 4, 5, 6])
Y1=pd.Series([0.3, 0.9, 2.7, 2, 3.5, 5]) #处理数据删除Nan
x1=X1.dropna()
y1=Y1.dropna()
n=x1.count()
x1.index=np.arange(n)
y1.index=np.arange(n) #分部计算
d=(x1.sort_values().index-y1.sort_values().index)**2
dd=d.to_series().sum() p=1-n*dd/(n*(n**2-1)) #s.corr()函数计算
r=x1.corr(y1,method='spearman')
print(r,p) #0.942857142857143 0.9428571428571428

  3. kendall correlation coefficient(肯德尔相关性系数)

    肯德尔相关性系数,又称肯德尔秩相关系数,它也是一种秩相关系数,不过它所计算的对象是分类变量。
分类变量可以理解成有类别的变量,可以分为:
(1) 无序的,比如性别(男、女)、血型(A、B、O、AB);
(2) 有序的,比如肥胖等级(重度肥胖,中度肥胖、轻度肥胖、不肥胖)。
通常需要求相关性系数的都是有序分类变量。

(1)公式

R=(P-(n*(n-1)/2-P))/(n*(n-1)/2)=(4P/(n*(n-1)))-1
注:设有n个统计对象,每个对象有两个属性。将所有统计对象按属性1取值排列,不失一般性,设此时属性2取值的排列是乱序的。设P为两个属性值排列大小关系一致的统计对象对数
(2)数据要求
类别数据或者可以分类的数据
(3)实例代码
import pandas as pd
import numpy as np #原始数据
x= pd.Series([3,1,2,2,1,3])
y= pd.Series([1,2,3,2,1,1])
r = x.corr(y,method="kendall") #-0.2611165

  

三大相关系数: pearson, spearman, kendall(python示例实现)的更多相关文章

  1. 相关性分析 -pearson spearman kendall相关系数

    先说独立与相关的关系:对于两个随机变量,独立一定不相关,不相关不一定独立.有这么一种直观的解释(不一定非常准确):独立代表两个随机变量之间没有任何关系,而相关仅仅是指二者之间没有线性关系,所以不难推出 ...

  2. 【转】Pearson,Spearman,Kendall相关系数的具体分析

    测量相关程度的相关系数很多,各种参数的计算方法及特点各异. 连续变量的相关指标: 此时一般用积差相关系数,又称pearson相关系数来表示其相关性的大小,积差相关系数只适用于两变量呈线性相关时.其数值 ...

  3. 【ML基础】皮尔森相关系数(Pearson correlation coefficient)

    前言 参考 1. 皮尔森相关系数(Pearson correlation coefficient): 完

  4. python 示例代码1

    第一章 python基础一 ​在此不再赘述为什么学习python这门编程,网上搜索一箩筐.我在此仅说一句python的好,用了你就会爱上它. 本python示例代码1000+带你由浅入深的了解pyth ...

  5. 相似性 similarity | Pearson | Spearman | p-value | 相关性 correlation | 距离 distance | distance measure

    这几个概念不能混淆,估计大部分人都没有完全搞懂这几个概念. 看下这个,非常有用:Interpret the key results for Correlation euclidean | maximu ...

  6. [原创]Zabbix3.4_API的python示例

    说明: 1.python版本为:python2.7 2.zabbix版本为:zabbix3.4 3.通过python脚本调用zabbix的api接口可以实现批量增删改查主机的信息. 示例如下: #-* ...

  7. python 示例代码3

    示例3:Python获取当前环境下默认编码(字符编码demo1.py) 字符编码,python解释器在加载py文件中的代码时,会对内容进行编码(默认ASCII),windows系统默认编码为GBK,U ...

  8. 计算机三大硬件和操作系统以及python解释器

    今日分享内容概要 计算机五大组成部分详解 计算机三大核心硬件 操作系统 编程与编程语言 编程语言的发展历史 编程语言的分类 python解释器 python解释器多版本共存 分享详细 计算机五大组成部 ...

  9. 安装zeromq以及zeromq的python示例

    下载ZeroMq: wget https://github.com/zeromq/zeromq4-1/releases/download/v4.1.5/zeromq-4.1.5.tar.gz 解压: ...

随机推荐

  1. 《细说PHP》第四版 样章 第18章 数据库抽象层PDO 9

    18.7  PDO的事务处理 事务是确保数据库一致的机制,是一个或一系列的查询,作为一个单元的一组有序的数据库操作.如果组中的所有SQL语句都操作成功,则认为事务成功,那么事务被提交,其修改将作用于所 ...

  2. Flink on Yarn的两种模式及HA

    转自:https://blog.csdn.net/a_drjiaoda/article/details/88203323 Flink on Yarn模式部署始末:Flink的Standalone和on ...

  3. MySQL索引知识学习笔记

    目录 一.索引的概念 二.索引分类 三.索引用法 四 .索引架构简介 五.索引适用的情况 六.索引不适用的情况 继我的上篇博客:Oracle索引知识学习笔记,再记录一篇MySQL的索引知识学习笔记,本 ...

  4. 第一章 1.18 re模块

    方法使用 1. compile(正则表达式) - 编译创建正则表达式对象 re_obj = re.compile(r'\d{3}') re_obj.fullmatch('234') re.fullma ...

  5. 利用Python进行数据分析-Pandas(第一部分)

    利用Python进行数据分析-Pandas: 在Pandas库中最重要的两个数据类型,分别是Series和DataFrame.如下的内容主要围绕这两个方面展开叙述! 在进行数据分析时,我们知道有两个基 ...

  6. 重磅来袭!Reactive 架构专场四城巡回演讲

    Reactive 究竟是什么?Reactive 对架构设计的影响和冲击,以及给开发方式带来的改变有哪些?为什么阿里巴巴.Pivotal.Facebook 纷纷在生产环境中实践 Reactive? 本次 ...

  7. Python远程linux执行命令

    1.远程登录到linux上,使用到的模块paramiko #远程登陆操作系统 def ssh(sys_ip,username,password,cmds): try #创建ssh客户端 client ...

  8. asp.net core web api 生成 swagger 文档

    asp.net core web api 生成 swagger 文档 Intro 在前后端分离的开发模式下,文档就显得比较重要,哪个接口要传哪些参数,如果一两个接口还好,口头上直接沟通好就可以了,如果 ...

  9. 为什么要学 Python? python该怎么学

    很多童鞋对为什么学习Python感到迷茫,小编来跟大家说说学习Python的10个理由,希望可以帮助到大家!!! 摘要: 看完这十个理由,我决定买本python从入门到精通! 如果你定期关注现今的科技 ...

  10. 易优CMS:arcview的基础用法

    [基础用法] 名称:arcview 功能:获取单条文档数据 语法: {eyou:arcview aid='文档ID'} <a href="{$field.arcurl}"&g ...