信息熵,交叉熵与KL散度
一、信息熵
若一个离散随机变量 \(X\) 的可能取值为 \(X = \{ x_{1}, x_{2},...,x_{n}\}\),且对应的概率为:
\]
那么随机变量 \(X\) 的熵定义为:
\]
规定当 \(p(x_{i})=0\) 时,\(H(X)=0\)。
通过公式可以看出,若随机变量 \(X\) 的取值等概率分布,即 \(p(x_{i} = p(x_{j}), i \neq j\) 时,\(H(X)\) 最大。
直观理解:信息熵表达的时随机变量 \(X\) 所含的信息量,当 \(X\) 中所有取值都等概率时,包含的信息量就越多,就需要用更多的信息来描述它。如果知道了 \(X\) 中取哪个值概率最大,那么描述它所需要的信息就越少,\(H(X)\) 就越小。换句话说,信息熵表明了信息的无序状态。
二、交叉熵
交叉熵定义为用模拟分布 \(q\) 来编码真实分布 \(p\) 所需要的平均编码长度比特个数:
\]
拿一个三分类问题举例,加入标签通过 one-hot 编码后的目标为 \([1,0,0]\),那么当预测完全准确时,模拟分布 \(q\) 的熵为:
\]
因此,在使用交叉熵作为损失函数执行分类任务时,通常使目标函数趋近于0。加入模型预测出来的结果为:\(p = [0.7, 0.2, 0.1]\),那么 \(p, q\) 的交叉熵为:
\]
为什么在分类任务中多用交叉熵而不是MSE作为损失函数?我们以二分类问题为例来解释这个问题。假设训练数据集为:\(T = \{ (x_{1},y_{1}),(x_{2},y_{2}),...,(x_{n},y_{n})\}\),其中 \(y_{i} \in \{0,1\}\)。网络的输出为:\(z = w^{T}x\),标签为 \(p = \{1,0\}\)。于是最后对网络所预测的概率值为:\(q = \sigma(z)\),其中 \(\sigma()\) 代表 sigmoid 激活函数:
\]
若使用 MSE 作为损失函数,则:
\dfrac{\partial L}{\partial w} = \dfrac{\partial L}{\partial q} \times \dfrac{\partial q}{\partial z} \times \dfrac{\partial z}{\partial w} = (q-p)\sigma'(z)x = (q-p)\sigma(z)(1-\sigma(z))x
\]
而使用交叉熵作为损失函数,则:
\dfrac{\partial L}{\partial w} = \dfrac{\partial L}{\partial q} \times \dfrac{\partial q}{\partial z} \times \dfrac{\partial z}{\partial w} = (-\dfrac{p}{q}+\dfrac{1-p}{1-q})\sigma'(z)x = (q-p)x
\]
对比之下发现,由于sigmoid 函数在输出接近0和1时,梯度很小,而使用 MSE 做损失函数时模型参数w会更新的比较慢,因此分类问题多采用交叉熵作为损失函数。
个人认为,使用交叉熵而不是用MSE的另一个原因在于,交叉熵损失函数的理想分类结果只与正确样本有关,而MSE损失函数与正误样本都有关系。
三、相对熵(\(KL\)散度)
相对熵用来表示两个概率分布的差异,它表示2个函数或概率分布的差异性:差异越大则相对熵越大,差异越小则相对熵越小,特别地,若2者相同则熵为0。公式表示如下:
\]
于是,相对熵=交叉熵-信息熵。而在有监督的机器学习和深度学习中,往往已经有了真实的样本(随机变量)和标签(label),因此可以理解为实际的概率分布 \(p\) 已知,而训练所得到的分布为 \(q\),那么信息熵 \(H_{p}\) 相当于常量,所以可以直接用交叉熵 \(H(p,q)\) 来衡量两个独立概率分布的差异。
信息熵,交叉熵与KL散度的更多相关文章
- 深度学习中交叉熵和KL散度和最大似然估计之间的关系
机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论 ...
- 【机器学习基础】熵、KL散度、交叉熵
熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)在机器学习的很多地方会用到.比如在决策树模型使用信息增益来选择 ...
- [ML]熵、KL散度、信息增益、互信息-学习笔记
[ML]熵.KL散度.信息增益.互信息-学习笔记 https://segmentfault.com/a/1190000000641079
- 机器学习、深度学习中的信息熵、相对熵(KL散度)、交叉熵、条件熵
信息熵 信息量和信息熵的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作<A Mathematical Theory of Communication>中提出的.如今 ...
- 熵(Entropy),交叉熵(Cross-Entropy),KL-松散度(KL Divergence)
1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类 ...
- [转]熵(Entropy),交叉熵(Cross-Entropy),KL-松散度(KL Divergence)
https://www.cnblogs.com/silent-stranger/p/7987708.html 1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练 ...
- 信息论相关概念:熵 交叉熵 KL散度 JS散度
目录 机器学习基础--信息论相关概念总结以及理解 1. 信息量(熵) 2. KL散度 3. 交叉熵 4. JS散度 机器学习基础--信息论相关概念总结以及理解 摘要: 熵(entropy).KL 散度 ...
- 从香农熵到手推KL散度
信息论与信息熵是 AI 或机器学习中非常重要的概念,我们经常需要使用它的关键思想来描述概率分布或者量化概率分布之间的相似性.在本文中,我们从最基本的自信息和信息熵到交叉熵讨论了信息论的基础,再由最大似 ...
- KL散度相关理解以及视频推荐
以下内容基于对[中字]信息熵,交叉熵,KL散度介绍||机器学习的信息论基础这个视频的理解,请务必先看几遍这个视频. 假设一个事件可能有多种结果,每一种结果都有其发生的概率,概率总和为1,也即一个数据分 ...
随机推荐
- 初识Vue2(一):表单输入绑定(附Demo)
在线演示 http://demo.xiongze.net/ 下载地址 https://gitee.com/xiongze/Vue2.git js引用 <!--这里可以自己下载下来引用,也可以使用 ...
- [bug]MySQL [Err] 1055 - Expression #1 of ORDER BY clause is not in GROUP BY clause
参考 http://www.10qianwan.com/articledetail/220315.html
- [刷题] 279 Perfect Squares
要求 给出一个正整数n,寻找最少的完全平方数,使他们的和为n 示例 n = 12 12 = 4 + 4 + 4 输出:3 边界 是否可能无解 思路 贪心:12=9+1+1+1,无法得到最优解 图论:从 ...
- wps中新罗马字体如何设置Times New Roman
word wps中新罗马字体如何设置Times New Roman ### WPS字体自带 Times New Roman ###
- Java 关键字详解
Java 关键字是 Java 语言中被赋予特殊意义的一些单词(每个关键字都代表着不同场景下的不同含义),不可以把它当作标识符来使用(不能用作变量名.方法名.类名.包名和参数名等).Java 中的关键字 ...
- addrinfo结构体原型-(转自 cxz2009)
addrinfo结构体原型 typedef struct addrinfo { int ai_flags; //AI_PASSIVE,AI_CANONNAME,AI_NUMERIC ...
- 面试官问:ZooKeeper 有几种节点类型?别再说 4 种啦!
本文作者:HelloGitHub-老荀 好久没更新 ZK 的文章了,我想死你们啦.之前发布的 HelloZooKeeper 系列文章完结后,项目收获了将近 600 个 star.这远远超过了我自己的预 ...
- Java--反射机制——反射 API(Day_04)
生活中迷茫感的产生,往往源之于坚持一件事放弃的那一刻,因为从那一刻起,你开始变得无聊,变得没有方向感. 运行环境 JDK8 + IntelliJ IDEA 2018.3 本文中使用的jar包链接 h ...
- Java反射机制详情
1.运行环境 JDK8+lntellij IDEA 2018.3 2.反射机制是什么 反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意一个 ...
- 树莓派 PICO基础教程(基于MicroPython)
目录 1 树莓派 PICO 简介 1.1 简介 1.2 配置 [^2] 1.3 引脚图 1.4 尺寸 2 安装 2.1 烧录固件 2.2 安装IDE(Thonny IDE) 2.3 离线运行程序 3 ...