T1 子集和

解题思路

大概是一个退背包的大白板,然而我考场上想复杂了,竟然还用到了组合数。

但是大概意思是一样的,有数的最小值一定是一个在 \(a\) 数组中存在的数字。

那么我们想办法除去它对应的贡献,可以一个一个退,也可以组合数一下一起退。。。

code

#include<bits/stdc++.h>
#define int long long
#define ull unsigend long long
#define f() cout<<"RP++"<<endl
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
const int N=1e4+10;
int n,cnt,m,top,s[N],t[N],ans[N],all[N];
inline int C(int x,int y)
{
__int128 temp=1; int p=1;
for(int i=y+1;i<=x;i++){temp*=i; while(p<=x-y&&temp%p==0) temp/=p,p++;}
return (int)temp;
}
#undef int
int main()
{
#define int long long
freopen("subset.in","r",stdin); freopen("subset.out","w",stdout);
n=read(); m=read();
for(int i=0;i<=m;i++) s[i]=read();
while(cnt<n)
{
int num,tot;
for(int i=1;i<=m;i++)
if(s[i]){num=i;tot=s[i];break;}
for(int i=1;i<=tot;i++) ans[++cnt]=num;
for(int i=1;i<=tot;i++) all[i]=C(tot,i),s[i*num]-=all[i];
for(int j=num+1;j<=m;j++)
{
if(!s[j]) continue;
for(int k=1;k<=tot;k++)
s[j+num*k]-=all[k]*s[j];
}
}
sort(ans+1,ans+n+1);
for(int i=1;i<=n;i++) printf("%lld ",ans[i]);
return 0;
}

T2 异或

解题思路

官方题解是枚举 \(k\) 的位置,然后 Tire 树计算答案,然而。。。

我的做法是对于不同的二进制位枚举 \(j\) 的位置,并计算贡献。

假设当前处理到的二进制位是 \(p\) 所有二进制位最高是 \(m\) 。

那么一对 \((i,k)\) 对于 \(j\) 有贡献,当且仅当 \(a_i,a_k\) 的 \([p+1,m]\) 这几个二进制位相同,并且如果 \(a_j\) 的这一位是 0 \(a_i\) 的这一位也是 0 \(a_k\) 的这一位也是 1 ,或者\(a_j\) 的这一位是 1 \(a_i\) 的这一位也是 1 \(a_k\) 的这一位也是 0 。

那么我们可以对于 \([p+1,m]\) 这几位出现过的数字以及 \(p\) 位上的数字开一个桶,然后直接计算贡献。

然而这样需要优化,我们可以计算每一次移动的变化值,然后记录第 \(j\) 个数字的第 \(p\) 位是 1 或者 0 的答案直接计入贡献。

具体实现开一个前缀的桶一个后缀的桶,然后可能需要离散化一下,这样会被卡常。。。

发现有些比较高的位是没有必要离散化的我们直接算就可以了,于是卡常成功!!

code

#include<bits/stdc++.h>
#define int long long
#define ull unsigend long long
#define f() cout<<"RP++"<<endl
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
const int N=1e7+10,M=5e5+10;
int n,m,ans,cnt,lsh[N],s[M],p[M],pre[2][N],suf[2][N];
inline void solve(register int pos)
{
register int U=((1ll<<m-pos)-1)<<pos+1,bas[2]={0,0};
if((1ll<<m-pos)-1<=10000000)
{
for(register int i=1;i<=n;i++) p[i]=(s[i]&U)>>pos+1;
for(register int i=1;i<=n;i++) pre[0][p[i]]=pre[1][p[i]]=suf[1][p[i]]=suf[0][p[i]]=0;
}
else
{
for(register int i=1;i<=n;i++) lsh[i]=(s[i]&U)>>pos+1;
sort(lsh+1,lsh+n+1); cnt=unique(lsh+1,lsh+n+1)-lsh-1;
for(register int i=1;i<=cnt;i++) pre[0][i]=pre[1][i]=suf[1][i]=suf[0][i]=0;
for(register int i=1;i<=n;i++) p[i]=lower_bound(lsh+1,lsh+cnt+1,(s[i]&U)>>pos+1)-lsh;
}
for(register int i=1;i<=n;i++) suf[(s[i]>>pos)&1][p[i]]++;
for(register int i=1;i<=n;i++)
{
register int p1=(s[i]>>pos)&1;
suf[p1][p[i]]--; bas[p1^1]-=pre[p1^1][p[i]];
ans+=bas[p1];
pre[p1][p[i]]++; bas[p1]+=suf[p1^1][p[i]];
}
}
#undef int
int main()
{
#define int long long
freopen("xor.in","r",stdin); freopen("xor.out","w",stdout);
n=read(); for(int i=1;i<=n;i++) s[i]=read(),m=max(m,(int)log2(s[i]));
for(int i=0;i<=m;i++) solve(i); printf("%lld",ans);
return 0;
}

T3 异或 2

解题思路

此题需要高精,于是我掌握了 string 高精。。。

直接推一波柿子,其实还是比较好理解的。。

直接记忆化搜索实现即可,最多递归 log 层复杂度完全可以接受。

code

#include<bits/stdc++.h>
#define int long long
#define ull unsigend long long
#define f() cout<<"RP++"<<endl
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
inline void write(string x){reverse(x.begin(),x.end());for(auto it:x)putchar(it+'0');putchar('\n');}
string n; map<string,string> f;
string mul(string x,int val)
{
int lim=x.size(); string y; for(auto it:x) y.push_back(it*val); y.push_back(0);
for(int i=0;i<y.size()-1;i++) y[i+1]+=y[i]/10,y[i]%=10; if(!(*(--y.end()))) y.pop_back();
return y;
}
string add(string x,string y)
{
int lim=max(x.size(),y.size())+1; string z; for(int i=1;i<=lim;i++) z.push_back(0);
for(int i=0;i<x.size();i++) z[i]+=x[i]; for(int i=0;i<y.size();i++) z[i]+=y[i];
for(int i=0;i<z.size()-1;i++) z[i+1]+=z[i]/10,z[i]%=10; if(!(*(--z.end()))) z.pop_back();
return z;
}
string div(string x)
{
for(int i=0;i<x.size();i++){if((x[i]&1)&&i) x[i-1]+=5; x[i]/=2;}
if(!(*(--x.end()))) x.pop_back();
return x;
}
string del(string x,int val)
{
if(x[0]>=val) return x[0]-=val,x;
int pos=0;
for(int i=1;i<x.size();i++)
if(x[i]){x[pos=i]--;break;}
for(int i=pos-1;i>=1;i--) x[i]=9;
x[0]=x[0]+10-val;
return x;
}
string dfs(string x)
{
if(f.find(x)!=f.end()) return f.find(x)->second;
string k=div(x),temp;
if(x[0]&1) temp=add(mul(dfs(k),4),mul(k,6));
else temp=add(add(mul(dfs(k),2),mul(dfs(del(k,1)),2)),del(mul(x,2),4));
return f.insert(make_pair(x,temp)),temp;
}
#undef int
int main()
{
#define int long long
freopen("rox.in","r",stdin); freopen("rox.out","w",stdout);
cin>>n; reverse(n.begin(),n.end());
for(int i=0;i<n.size();i++) n[i]-='0';
string t1,t2; t1.clear(); t2.clear(); t1.push_back(0); t2.push_back(0); f.insert(make_pair(t1,t2));
t1.clear(); t1.push_back(1); f.insert(make_pair(t1,t2)); t1.clear(); t1.push_back(2); f.insert(make_pair(t1,t2));
t1.clear(); t2.clear(); t1.push_back(3); t2.push_back(6); f.insert(make_pair(t1,t2));
write(dfs(n));
return 0;
}

T4 卡牌游戏

解题思路

又是老脸买原题系列(虽然我没做过)

发现其实是若干个联通块,一个合法的联通块显然只能是基环树或者树,对于 -1 的情况直接并茶几根据点数边数关系判断即可。。

那么答案就是所有的联通块最小操作次数加和,方案数就是所有联通块的方案数乘积。

对于一个联通块而言,我们把牌的两边互相连边,边权分别赋值为 0 或者 1 ,那么最后的形态一定是一某个节点为根,所有的边都指向儿子。

对于树的情况直接换根 DP 即可,基环树的情况一定出现在环上的点为根的时候,直接统计。。

code

#include<bits/stdc++.h>
#define int long long
#define ull unsigend long long
#define f() cout<<"RP++"<<endl
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
const int N=2e5+10,INF=1e18,mod=998244353;
int n,ans1,ans2=1,cnt1,cnt2,id,banx,bany,du[N],fa[N],f[N],g[N];
int tot=1,head[N],ver[N<<1],nxt[N<<1],edge[N<<1];
bool vis[N];
pair<int,int> siz[N];
void add_edge(int x,int y,int val)
{
ver[++tot]=y; edge[tot]=val; du[y]++;
nxt[tot]=head[x]; head[x]=tot;
}
int find(int x)
{
if(fa[x]==x) return x;
return fa[x]=find(fa[x]);
}
void dfs(int x,int fa)
{
vis[x]=true;
for(int i=head[x];i;i=nxt[i])
{
int to=ver[i]; if(to==fa) continue;
if(vis[to]){id=i;banx=x;bany=to;continue;}
dfs(to,x); f[x]+=edge[i]+f[to];
}
}
void dfs2(int x,int fa)
{
if(g[x]<cnt1) cnt1=g[x],cnt2=1;
else cnt2+=g[x]==cnt1;
for(int i=head[x];i;i=nxt[i])
if(ver[i]!=fa&&i!=id&&(i!=(id^1)))
if(edge[i]) g[ver[i]]=g[x]-1,dfs2(ver[i],x);
else g[ver[i]]=g[x]+1,dfs2(ver[i],x);
}
#undef int
int main()
{
#define int long long
freopen("card.in","r",stdin); freopen("card.out","w",stdout);
n=read();
for(int i=1,x,y;i<=n;i++)
x=read(),y=read(),
add_edge(x,y,1),add_edge(y,x,0);
for(int i=1;i<=2*n;i++) fa[i]=i,siz[i]=make_pair(1,du[i]);
for(int i=1;i<=n;i++)
{
int x=find(ver[i<<1]),y=find(ver[i<<1|1]); if(x==y) continue;
siz[y]=make_pair(siz[x].first+siz[y].first,siz[x].second+siz[y].second);
fa[x]=y;
}
for(int i=1;i<=2*n;i++)
if(find(i)==i&&siz[i].second>siz[i].first*2)
printf("-1 -1"),exit(0);
for(int i=1;i<=2*n;i++)
{
if(vis[i]) continue; cnt1=INF; cnt2=id=0;
dfs(i,0); g[i]=f[i]; dfs2(i,0);
if(!id){ans1+=cnt1;ans2=ans2*cnt2%mod;continue;}
int t1=g[banx]+(edge[id]^1),t2=g[bany]+edge[id];
ans1+=min(t1,t2); if(t1==t2) ans2=ans2*2%mod;
}
printf("%lld %lld",ans1,ans2);
return 0;
}

NOIP模拟96(多校29)的更多相关文章

  1. NOIP模拟83(多校16)

    前言 CSP之后第一次模拟赛,感觉考的一般. 不得不吐槽多校联测 OJ 上的评测机是真的慢... T1 树上的数 解题思路 感觉自己思维有些固化了,一看题目就感觉是线段树. 考完之后才想起来这玩意直接 ...

  2. NOIP模拟92(多校25)

    前言 所以说这次是 HZOI 多校联测巅峰????(题目,数据过水??) T1 石子合并 解题思路 签到题. 发现我们可以给每个数字附一个正负号,每个数字的贡献就是它本身乘上这个符号. 发现至少应该有 ...

  3. NOIP模拟84(多校17)

    T1 宝藏 解题思路 考场上一眼出 \(nlog^2\) 做法,然后没看见是 1s 3e5 的数据,我竟然以为自己切了?? 考完之后尝试着把二分改为指针的移动,然后就过了??或许是数据水吧,感觉自己的 ...

  4. NOIP模拟85(多校18)

    前言 好像每个题目背景所描述的人都是某部番里的角色,热切好像都挺惨的(情感上的惨). 然后我只知道 T1 的莓,确实挺惨... T1 莓良心 解题思路 首先答案只与 \(w\) 的和有关系,于是问题就 ...

  5. NOIP模拟86(多校19)

    T1 特殊字符串 解题思路 \(f_{i,j}\) 表示前 \(i\) 个字符中结尾为 \(j\) 的最大贡献. 转移枚举当前位置于之前位置结尾的组合加上贡献即可. 对于边界问题,容易发现选择 1 一 ...

  6. NOIP模拟88(多校21)

    前言 对于这套题的总体感觉就是难,然后就是自己很菜... 对于 T1 考试时只会一个最垃圾的背包,考完之后对于思路这一块也不是很顺利,大概这就是薄弱的地方吧. 然后 T2 是比较简单的一道题了,但是考 ...

  7. NOIP模拟99(多校31)

    T1 法阵 解题思路 原题3100,张口放 T1(出题人原话) 思维题,合法的情况其实就是上下两个梯形拼起来的样子. 他们的边界都是在 \(i\) 轴上面,但是不能相交. 于是我们可以尝试两者相交的纵 ...

  8. Nescafe #29 NOIP模拟赛

    Nescafe #29 NOIP模拟赛 不知道这种题发出来算不算侵权...毕竟有的题在$bz$上是权限题,但是在$vijos$似乎又有原题...如果这算是侵权的话请联系我,我会尽快删除,谢谢~ 今天开 ...

  9. noip模拟29[简单的板子题](虽然我不会)

    \(noip模拟29\;solutions\) 这次考试给我最大的伤害,让我意识到了差距 这场考试可以说是非常的简单,就是简单到,看两眼,打个表就有结果了 但是呢?我考得非常的完蛋,只有30pts 据 ...

随机推荐

  1. 项目部署(ubuntu+uwsgi+nginx+supervisor+django)

    一.在开发机上的准备工作 1. 确认项目没有bug. 2.设置`ALLOW_HOST`为你的域名,以及ip地址. 4.设置`DEBUG=False`,避免如果你的网站产生错误,而将错误信息暴漏给用户. ...

  2. P7581-「RdOI R2」路径权值【长链剖分,dp】

    正题 题目链接:https://www.luogu.com.cn/problem/P7581 题目大意 给出\(n\)个点的有边权有根树,\(m\)次询问一个节点\(x\)的所有\(k\)级儿子两两之 ...

  3. P3273-[SCOI2011]棘手的操作【线段树,并查集】

    正题 题目链接:https://www.luogu.com.cn/problem/P3273 题目大意 \(n\)个点有权值,要求支持操作 连接两个点 单点加权 联通块加权 全图加权 单点询问 联通块 ...

  4. Python : TypeError: 'int' object is not iterable

    用循环依次对list中的每个名字打印出 Hello, xxx! -------------------------------------------------------- L = ['Bart' ...

  5. 模仿ToDoList

    1.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...

  6. 洛谷4234最小差值生成树 (LCT维护生成树)

    这也是一道LCT维护生成树的题. 那么我们还是按照套路,先对边进行排序,然后顺次加入. 不过和别的题有所不同的是: 在本题中,我们需要保证LCT中正好有\(n-1\)条边的时候,才能更新\(ans\) ...

  7. Billu_b0x2内网渗透(多种提权方法)靶场-vulnhub

    个人博客阅读体验更佳 本次来试玩一下vulnhub上的Billu_b0x2,下载地址. 下载下来后是 .ova 格式,建议使用vitualbox进行搭建,vmware可能存在兼容性问题.靶场推荐使用N ...

  8. WIFI Deauth攻击-爬坑笔记

    这里用Aircrack这款工具进行介绍: 准备工作:无线网卡连接电脑或者虚拟机(免驱的最好),如需驱动请自行安装驱动 1.将无线网卡接入测试电脑Linux虚拟机(装有Aircrack-ng) 2.测试 ...

  9. D:\Software\Keil5\ARM\PACK\Keil\STM32F1xx_DFP\2.1.0\Device\Include\stm32f10x.h(483): error: #5: cannot open source input file "core_cm3.h": No such file or directory

    1. 错误提示信息: D:\Software\Keil5\ARM\PACK\Keil\STM32F1xx_DFP\2.1.0\Device\Include\stm32f10x.h(483): erro ...

  10. HCNP Routing&Switching之BGP路由宣告

    前文我们了解了BGP报文结构.类型以及邻居状态相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15422924.html:今天我们来聊一聊BGP路由宣告 ...