为了方便,用$N=10^{5}$来描述复杂度

(对原串建立SAM)注意到$\sum|w|=qk\le N$,考虑对$q$和$k$的大小关系分类讨论:

1.若$q\le k$,即询问次数较少,将其与原串建立一个广义SAM,然后找到枚举所有区间,倍增找到该区间对应子串的位置,该right集合大小即为答案,时间复杂度为$o(qN\log N)$

(建立广义SAM的实际操作,由于只关心于$s$的子串,并不需要新建节点,会更方便一些)

2.若$k<q$,即串长较短,直接暴力枚举查询串的所有子串,并在原串的SAM上查询其出现次数(即对应节点的right集合大小),然后统计其在$[l_{a},r_{a}],[l_{a+1},r_{a+1}],...,[l_{b},r_{b}]$中出现了几次:

将$m$个区间中相同区间存储位置到同一个vector中,然后即查询该区间对应的vector有几个元素在$[a,b]$中,通过二分即可,时间复杂度为$o(qk^{2}\log N)=o(Nk\log N)$

显然总复杂度为$O(N\sqrt{N}\log N)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define ll long long
5 vector<int>v[N];
6 int V,n,m,q,l,lst,a,b,nex[N],len[N],R[N],ch[N][26],A[N],B[N],pos[N],Len[N],fa[N][20];
7 ll ans;
8 char s[N],ss[N];
9 void add(int c){
10 int p=lst,np=lst=++V;
11 len[np]=len[p]+1;
12 while ((p)&&(!ch[p][c])){
13 ch[p][c]=np;
14 p=nex[p];
15 }
16 if (!p)nex[np]=1;
17 else{
18 int q=ch[p][c];
19 if (len[q]==len[p]+1)nex[np]=q;
20 else{
21 int nq=++V;
22 nex[nq]=nex[q];
23 nex[q]=nex[np]=nq;
24 len[nq]=len[p]+1;
25 memcpy(ch[nq],ch[q],sizeof(ch[q]));
26 while ((p)&&(ch[p][c]==q)){
27 ch[p][c]=nq;
28 p=nex[p];
29 }
30 }
31 }
32 }
33 void dfs(int k,int f){
34 fa[k][0]=f;
35 for(int i=1;i<20;i++)fa[k][i]=fa[fa[k][i-1]][i-1];
36 for(int i=0;i<v[k].size();i++){
37 dfs(v[k][i],k);
38 R[k]+=R[v[k][i]];
39 }
40 }
41 int get(int k,int l){
42 for(int i=19;i>=0;i--)
43 if (len[fa[k][i]]>=l)k=fa[k][i];
44 return k;
45 }
46 int main(){
47 scanf("%d%d%d%d%s",&n,&m,&q,&l,s);
48 for(int i=0;i<m;i++)scanf("%d%d",&A[i],&B[i]);
49 V=lst=1;
50 for(int i=0;i<n;i++){
51 add(s[i]-'a');
52 R[lst]=1;
53 }
54 for(int i=2;i<=V;i++)v[nex[i]].push_back(i);
55 dfs(1,0);
56 if (q<=l){
57 for(int ii=1;ii<=q;ii++){
58 scanf("%s%d%d",ss,&a,&b);
59 ans=0;
60 for(int i=0,k=1;i<l;i++){
61 while ((k>1)&&(!ch[k][ss[i]-'a']))k=nex[k];
62 Len[i]=len[k];
63 if (i)Len[i]=min(Len[i],Len[i-1]);
64 if (ch[k][ss[i]-'a']){
65 k=ch[k][ss[i]-'a'];
66 Len[i]++;
67 }
68 pos[i]=k;
69 }
70 for(int j=a;j<=b;j++)
71 if (Len[B[j]]>=B[j]-A[j]+1)ans+=R[get(pos[B[j]],B[j]-A[j]+1)];
72 printf("%lld\n",ans);
73 }
74 }
75 else{
76 for(int i=0;i<l*l;i++)v[i].clear();
77 for(int i=0;i<m;i++)v[A[i]*l+B[i]].push_back(i);
78 for(int ii=1;ii<=q;ii++){
79 scanf("%s%d%d",ss,&a,&b);
80 ans=0;
81 for(int i=0;i<l;i++)
82 for(int j=i,k=1;j<l;j++){
83 k=ch[k][ss[j]-'a'];
84 if (!k)break;
85 int p=i*l+j;
86 int posl=lower_bound(v[p].begin(),v[p].end(),a)-v[p].begin();
87 int posr=upper_bound(v[p].begin(),v[p].end(),b)-v[p].begin()-1;
88 ans+=(ll)R[k]*max(posr-posl+1,0);
89 }
90 printf("%lld\n",ans);
91 }
92 }
93 return 0;
94 }

[loj6031]字符串的更多相关文章

  1. [LOJ6029~6052]雅礼集训 2017 选做

    Link 代码可以在loj上看我的提交记录. Day 1 [LOJ6029]市场 对于一次除法操作,若区间内所有数的减少量均相同则可视作区间减法,否则暴力递归下去.显然一个线段树节点只会被暴力递归进去 ...

  2. loj6031「雅礼集训 2017 Day1」字符串

    题目 首先先对\(s\)建一个\(\operatorname{SAM}\),设\(w=kq\) 发现\(k,q\leq 10^5\),但是\(w\leq 10^5\),于是套路地根号讨论一下 如果\( ...

  3. 并不对劲的Loj6031:「雅礼集训 2017 Day1」字符串

    题目传送门:-> 看到题目的第一反应当然是暴力:对于串s建后缀自动机,每次询问中,求w对应的子串在s的SAM中的right集合.O(qmk)听上去显然过不了. 数据范围有个∑w<=1e5, ...

  4. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  5. 测试一下StringBuffer和StringBuilder及字面常量拼接三种字符串的效率

    之前一篇里写过字符串常用类的三种方式<java中的字符串相关知识整理>,只不过这个只是分析并不知道他们之间会有多大的区别,或者所谓的StringBuffer能提升多少拼接效率呢?为此写个简 ...

  6. java中的字符串相关知识整理

    字符串为什么这么重要 写了多年java的开发应该对String不陌生,但是我却越发觉得它陌生.每学一门编程语言就会与字符串这个关键词打不少交道.看来它真的很重要. 字符串就是一系列的字符组合的串,如果 ...

  7. JavaScript 字符串实用常操纪要

    JavaScript 字符串用于存储和处理文本.因此在编写 JS 代码之时她总如影随形,在你处理用户的输入数据的时候,在读取或设置 DOM 对象的属性时,在操作 Cookie 时,在转换各种不同 Da ...

  8. Java 字符串格式化详解

    Java 字符串格式化详解 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 文中如有纰漏,欢迎大家留言指出. 在 Java 的 String 类中,可以使用 format() 方法 ...

  9. Redis的简单动态字符串实现

    Redis 没有直接使用 C 语言传统的字符串表示(以空字符结尾的字符数组,以下简称 C 字符串), 而是自己构建了一种名为简单动态字符串(simple dynamic string,sds)的抽象类 ...

随机推荐

  1. java 从零开始手写 RPC (03) 如何实现客户端调用服务端?

    说明 java 从零开始手写 RPC (01) 基于 socket 实现 java 从零开始手写 RPC (02)-netty4 实现客户端和服务端 写完了客户端和服务端,那么如何实现客户端和服务端的 ...

  2. TypeScript中将函数中的局部变量“导出”的方法

    首先是在模块a.js中声明一个可导出(export)的数据结构,例如: export class ModelInfo{ id: string; name:string; } 其次是在模块b中声明可导出 ...

  3. 电脑日常使用bug记录

    1.由于电脑太卡了,于是决定关一点服务,一不小心,电脑无线无法使用了.启动无线服务时提示"windows无法启动wlan autoconfig服务错误1068依赖服务" 启动 Ex ...

  4. docker逃逸漏洞复现(CVE-2019-5736)

    漏洞概述 2019年2月11日,runC的维护团队报告了一个新发现的漏洞,SUSE Linux GmbH高级软件工程师Aleksa Sarai公布了影响Docker, containerd, Podm ...

  5. 6月8日 Scrum Meeting

    日期:2021年6月8日 会议主要内容概述: 确定6.9日下午两点到五点集中对接 初步确定主题配色和echarts默认图表颜色 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作 ...

  6. IDEA + maven 零基础构建 java agent 项目

    200316-IDEA + maven 零基础构建 java agent 项目 Java Agent(java 探针)虽说在 jdk1.5 之后就有了,但是对于绝大多数的业务开发 javaer 来说, ...

  7. CSP-S 2021 遗言

    感谢€€£,谢谢宁嘞! 第一题,€€£给了很多限制条件,什么"先到先得"."只有一个跑道",让它看起来很好做,然后来骗,来偷袭,广大"消费者" ...

  8. 用Python画如此漂亮的专业插图 ?简直So easy!

    本文整理自知乎问答,仅用于学术分享,著作权归作者所有.如有侵权,请联系我删文处理.多多转发,多多学习! 方法一 强烈推荐 Python 的绘图模块 matplotlib: python plottin ...

  9. 字符串与模式匹配算法(六):Needleman–Wunsch算法

    一.Needleman-Wunsch 算法 尼德曼-翁施算法(英语:Needleman-Wunsch Algorithm)是基于生物信息学的知识来匹配蛋白序列或者DNA序列的算法.这是将动态算法应用于 ...

  10. minimum-depth-of-binary-tree leetcode C++

    Given a binary tree, find its minimum depth.The minimum depth is the number of nodes along the short ...