题面传送门

首先很显然的一点是,看到类似于“最大值最小”的字眼就考虑二分答案 \(x\)(这点我倒是想到了)

然鹅之后就不会做了/wq/wq/wq

注意到此题正着处理不太方便,故考虑倒着处理,那么原题相当于,初始 \(b_i=x\),每次操作有以下步骤:

  • \(\forall i,b_i\leftarrow b_i-a_i\) 并且要求修改过后的 \(b_i\geq 0\)
  • 选择 \(k\) 个 \(b_i\) 并将它们加上 \(p\)
  • 要求最后 \(\forall i,b_i\geq h_i\)

我们考虑建一个堆,堆里面维护所有元素的 \(\lfloor\dfrac{b_i}{a_i}\rfloor\) 的值,也就是每个元素最多减多少个 \(b_i\) 就会变到 \(0\)。然后我们每次贪心地选择 \(\lfloor\dfrac{b_i}{a_i}\rfloor\) 最小的元素并将其加上 \(p\),如果选完了还是发现有元素减去 \(a_i\) 后小于 \(0\) 就直接返回不合法即可。

最后考虑怎么判最终 \(b_i\geq h_i\) 是否成立。其实我们只需加一个小小的优化即可,不难发现对于某个 \(b_i\),如果我们给其加了 \(c_i\) 次 \(p\),并且满足 \(h_i+ma_i\leq x+c_ip\),那么我们就不用管这个元素了,因为不论怎样它最终都是大于 \(0\) 的,也就是说我们每次将某个 \(b_i\) 加上 \(p\) 之后如果发现 \(h_i+ma_i\leq x+c_ip\) 成立,那么我们就不用再将该元素压入堆了,最后检验堆是否为空即可。

时间复杂度 \((n+mk)\log n\log a_i\)。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=1e5;
int n,m,k,p,h[MAXN+5],a[MAXN+5];
int cnt[MAXN+5];
bool check(ll x){
memset(cnt,0,sizeof(cnt));
priority_queue<pair<ll,int>,vector<pair<ll,int> >,greater<pair<ll,int> > > q;
for(int i=1;i<=n;i++) if(h[i]+1ll*a[i]*m>x) q.push(mp(x/a[i],i));
if(!q.empty()&&q.top().fi==0) return 0;
for(int i=1;i<=m&&!q.empty();i++){
for(int j=1;j<=k&&!q.empty();j++){
pair<ll,int> pp=q.top();q.pop();
int id=pp.se;cnt[id]++;
if(h[id]+1ll*a[id]*m>x+1ll*p*cnt[id])
q.push(mp((x+1ll*p*cnt[id])/a[id],id));
}
if(!q.empty()&&q.top().fi<=i) return 0;
} return q.empty();
}
int main(){
scanf("%d%d%d%d",&n,&m,&k,&p);
for(int i=1;i<=n;i++) scanf("%d%d",&h[i],&a[i]);
ll l=0,r=1e18,x=0,mid;
while(l<=r) check(mid=l+r>>1)?x=mid,r=mid-1:l=mid+1;
printf("%lld\n",x);
return 0;
}

Codeforces 505E - Mr. Kitayuta vs. Bamboos(二分+堆)的更多相关文章

  1. @codeforces - 506C@ Mr. Kitayuta vs. Bamboos

    目录 @description@ @solution@ @accepted code@ @details@ @description@ n 个竹子,第 i 个竹子初始高度 hi,在每天结束时将长高 a ...

  2. Mr. Kitayuta vs. Bamboos

    Mr. Kitayuta vs. Bamboos 题目链接:http://codeforces.com/problemset/problem/505/E 参考:http://blog.csdn.net ...

  3. 「CF505E」 Mr. Kitayuta vs. Bamboos

    「CF505E」 Mr. Kitayuta vs. Bamboos 传送门 如果没有每轮只能进行 \(k\) 次修改的限制或者没有竹子长度必须大于 \(0\) 的限制那么直接贪心就完事了. 但是很遗憾 ...

  4. CodeForces 505B Mr. Kitayuta's Colorful Graph

    Mr. Kitayuta's Colorful Graph Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d ...

  5. codeforces 505B Mr. Kitayuta's Colorful Graph(水题)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Mr. Kitayuta's Colorful Graph Mr. Kitayut ...

  6. [Codeforces 505C]Mr. Kitayuta, the Treasure Hunter

    Description The Shuseki Islands are an archipelago of 30001 small islands in the Yutampo Sea. The is ...

  7. Codeforces 505A Mr. Kitayuta's Gift 暴力

    A. Mr. Kitayuta's Gift time limit per test 1 second memory limit per test 256 megabytes input standa ...

  8. Codeforces 506D Mr. Kitayuta's Colorful Graph(分块 + 并查集)

    题目链接  Mr. Kitayuta's Colorful Graph 把每种颜色分开来考虑. 所有的颜色分为两种:涉及的点的个数 $> \sqrt{n}$    涉及的点的个数 $<= ...

  9. CodeForces - 505B Mr. Kitayuta's Colorful Graph 二维并查集

    Mr. Kitayuta's Colorful Graph Mr. Kitayuta has just bought an undirected graph consisting of n verti ...

随机推荐

  1. 使用cerebro可视化ElasticSearch集群信息

    使用cerebro可视化ElasticSearch集群信息 一.背景 二.安装步骤 1.下载并解压 2.配置cerebro 3.启动 cerebro 4.启动界面 三.注意事项 四.参考文档 一.背景 ...

  2. spring cloud feign的各种配置的使用

    在上一节我们完成了feign的基本使用,学会了feign如何去调用其他微服务,这次我们来完成feign的一些自定义配置. 实现功能:     1.全局修改feign的配置和单独修改feign客户端的配 ...

  3. 2021.10.12考试总结[NOIP模拟75]

    T1 如何优雅的送分 考虑式子的实际意义.\(2^{f_n}\)实际上就是枚举\(n\)质因子的子集.令\(k\)为这个子集中数的乘积,就可以将式子转化为枚举\(k\),计算\(k\)的贡献. 不难得 ...

  4. 有了 HTTP 协议,为什么还需要 Websocket?

    WebSocket 是一种基于 TCP 连接上进行全双工通信的协议,相对于 HTTP 这种非持久的协议来说,WebSocket 是一个持久化网络通信的协议. 它不仅可以实现客户端请求服务器,同时可以允 ...

  5. NOIP模拟85(多校18)

    前言 好像每个题目背景所描述的人都是某部番里的角色,热切好像都挺惨的(情感上的惨). 然后我只知道 T1 的莓,确实挺惨... T1 莓良心 解题思路 首先答案只与 \(w\) 的和有关系,于是问题就 ...

  6. Android DataBinding使用详解

    简介 DataBinding是一个自动绑定UI的框架. 使用DataBinding需要在app根目录的build.gradle文件中加入DataBinding配置: android { .... da ...

  7. 从零开始的DIY智能家居 - 基于 ESP32 的智能水浊度传感器

    前言 家里有个鱼缸养了几条鱼来玩玩,但是换水的问题着实头疼,经常一个不注意就忘记换水,鱼儿就没了.o(╥﹏╥)o 在获得 Spirit 1 边缘计算机 后就相当于有了一个人智能设备服务器,可以自己开发 ...

  8. sql server 如何跟更新拼接的数据(cast用法)

    我们在实际中会做如下图的连接 执行以后这个连接就会报错了,如下图所示   然后我们用cast将数字转换为字符串在连接,如下图所示     这次连接的结果就没问题了,如下图所示     最后如果两个数字 ...

  9. poj 2060 Taxi Cab Scheme(DAG图的最小路径覆盖)

    题意: 出租车公司有M个订单. 订单格式:     hh:mm  a  b  c  d 含义:在hh:mm这个时刻客人将从(a,b)这个位置出发,他(她)要去(c,d)这个位置. 规定1:从(a,b) ...

  10. SpringCloud微服务实战——搭建企业级开发框架(十三):OpenFeign+Ribbon实现高可用重试机制

      Spring Cloud OpenFeign 默认是使用Ribbon实现负载均衡和重试机制的,虽然Feign有自己的重试机制,但该功能在Spring Cloud OpenFeign基本用不上,除非 ...