题面传送门

首先很显然的一点是,看到类似于“最大值最小”的字眼就考虑二分答案 \(x\)(这点我倒是想到了)

然鹅之后就不会做了/wq/wq/wq

注意到此题正着处理不太方便,故考虑倒着处理,那么原题相当于,初始 \(b_i=x\),每次操作有以下步骤:

  • \(\forall i,b_i\leftarrow b_i-a_i\) 并且要求修改过后的 \(b_i\geq 0\)
  • 选择 \(k\) 个 \(b_i\) 并将它们加上 \(p\)
  • 要求最后 \(\forall i,b_i\geq h_i\)

我们考虑建一个堆,堆里面维护所有元素的 \(\lfloor\dfrac{b_i}{a_i}\rfloor\) 的值,也就是每个元素最多减多少个 \(b_i\) 就会变到 \(0\)。然后我们每次贪心地选择 \(\lfloor\dfrac{b_i}{a_i}\rfloor\) 最小的元素并将其加上 \(p\),如果选完了还是发现有元素减去 \(a_i\) 后小于 \(0\) 就直接返回不合法即可。

最后考虑怎么判最终 \(b_i\geq h_i\) 是否成立。其实我们只需加一个小小的优化即可,不难发现对于某个 \(b_i\),如果我们给其加了 \(c_i\) 次 \(p\),并且满足 \(h_i+ma_i\leq x+c_ip\),那么我们就不用管这个元素了,因为不论怎样它最终都是大于 \(0\) 的,也就是说我们每次将某个 \(b_i\) 加上 \(p\) 之后如果发现 \(h_i+ma_i\leq x+c_ip\) 成立,那么我们就不用再将该元素压入堆了,最后检验堆是否为空即可。

时间复杂度 \((n+mk)\log n\log a_i\)。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=1e5;
int n,m,k,p,h[MAXN+5],a[MAXN+5];
int cnt[MAXN+5];
bool check(ll x){
memset(cnt,0,sizeof(cnt));
priority_queue<pair<ll,int>,vector<pair<ll,int> >,greater<pair<ll,int> > > q;
for(int i=1;i<=n;i++) if(h[i]+1ll*a[i]*m>x) q.push(mp(x/a[i],i));
if(!q.empty()&&q.top().fi==0) return 0;
for(int i=1;i<=m&&!q.empty();i++){
for(int j=1;j<=k&&!q.empty();j++){
pair<ll,int> pp=q.top();q.pop();
int id=pp.se;cnt[id]++;
if(h[id]+1ll*a[id]*m>x+1ll*p*cnt[id])
q.push(mp((x+1ll*p*cnt[id])/a[id],id));
}
if(!q.empty()&&q.top().fi<=i) return 0;
} return q.empty();
}
int main(){
scanf("%d%d%d%d",&n,&m,&k,&p);
for(int i=1;i<=n;i++) scanf("%d%d",&h[i],&a[i]);
ll l=0,r=1e18,x=0,mid;
while(l<=r) check(mid=l+r>>1)?x=mid,r=mid-1:l=mid+1;
printf("%lld\n",x);
return 0;
}

Codeforces 505E - Mr. Kitayuta vs. Bamboos(二分+堆)的更多相关文章

  1. @codeforces - 506C@ Mr. Kitayuta vs. Bamboos

    目录 @description@ @solution@ @accepted code@ @details@ @description@ n 个竹子,第 i 个竹子初始高度 hi,在每天结束时将长高 a ...

  2. Mr. Kitayuta vs. Bamboos

    Mr. Kitayuta vs. Bamboos 题目链接:http://codeforces.com/problemset/problem/505/E 参考:http://blog.csdn.net ...

  3. 「CF505E」 Mr. Kitayuta vs. Bamboos

    「CF505E」 Mr. Kitayuta vs. Bamboos 传送门 如果没有每轮只能进行 \(k\) 次修改的限制或者没有竹子长度必须大于 \(0\) 的限制那么直接贪心就完事了. 但是很遗憾 ...

  4. CodeForces 505B Mr. Kitayuta's Colorful Graph

    Mr. Kitayuta's Colorful Graph Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d ...

  5. codeforces 505B Mr. Kitayuta's Colorful Graph(水题)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Mr. Kitayuta's Colorful Graph Mr. Kitayut ...

  6. [Codeforces 505C]Mr. Kitayuta, the Treasure Hunter

    Description The Shuseki Islands are an archipelago of 30001 small islands in the Yutampo Sea. The is ...

  7. Codeforces 505A Mr. Kitayuta's Gift 暴力

    A. Mr. Kitayuta's Gift time limit per test 1 second memory limit per test 256 megabytes input standa ...

  8. Codeforces 506D Mr. Kitayuta's Colorful Graph(分块 + 并查集)

    题目链接  Mr. Kitayuta's Colorful Graph 把每种颜色分开来考虑. 所有的颜色分为两种:涉及的点的个数 $> \sqrt{n}$    涉及的点的个数 $<= ...

  9. CodeForces - 505B Mr. Kitayuta's Colorful Graph 二维并查集

    Mr. Kitayuta's Colorful Graph Mr. Kitayuta has just bought an undirected graph consisting of n verti ...

随机推荐

  1. Java中的函数式编程(四)方法引用method reference

    写在前面 我们已经知道,lambda表达式是一个匿名函数,可以用lambda表达式来实现一个函数式接口.   很自然的,我们会想到类的方法也是函数,本质上和lambda表达式是一样的,那是否也可以用类 ...

  2. 【UE4】GAMES101 图形学作业1:mvp 模型、视图、投影变换

    总览 到目前为止,我们已经学习了如何使用矩阵变换来排列二维或三维空间中的对象.所以现在是时候通过实现一些简单的变换矩阵来获得一些实际经验了.在接下来的三次作业中,我们将要求你去模拟一个基于CPU 的光 ...

  3. 脚本:bat实现自动转换windows远程端口

    问题描述:通过一个脚本可以实现windows远程端口的转换,这个是拷贝过来学习的一个脚本 @echo off color f0 echo 修改远程桌面3389端口(支持Windows 2003 200 ...

  4. jzoj6094

    题目描述 给定一个循环流(每个点均满足流量平衡条件),这个循环流有$n$个点,且每条边的流量只有 $1$ 或$ 2$,其中$a$条边流量为$1$,$b$条边流量为$2$,判断是否存在一个流满足上述条件 ...

  5. 矩阵中的路径 牛客网 剑指Offer

    矩阵中的路径 牛客网 剑指Offer 题目描述 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径.路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下 ...

  6. Luogu P1196 [NOI2002]银河英雄传说 | 并查集

    题目链接 并查集,具体看注释. #include<iostream> #include<cstdio> #include<cmath> using namespac ...

  7. hdu 1198 Farm Irrigation(并查集)

    题意: Benny has a spacious farm land to irrigate. The farm land is a rectangle, and is divided into a ...

  8. zabbix web管理页面 中文乱码问题

    1.在自己电脑上找下图文件,C:\Windows\Fonts 2.上传到 /usr/share/zabbix/assets/fonts/ 目录下 可以看到 graphfont.ttf 是 /etc/a ...

  9. SQL告警,执行时间长?教你写一手好 SQL !

    博主(编码砖家)负责的项目主要采用阿里云数据库MySQL,最近频繁出现慢SQL告警,执行时间最长的竟然高达5分钟.导出日志后分析,主要原因竟然是没有命中索引和没有分页处理 . 其实这是非常低级的错误, ...

  10. mysql-5.7.30安装

    1.由于在线安装受制于网络环境,所以选择tar包编译安装.      首先去mysql镜像站下载mysql-5.7.30-linux-glibc2.5-x86_64.tar.gz2.上传到linux服 ...