Codeforces 285E - Positions in Permutations(二项式反演+dp)
upd on 2021.10.20:修了个 typo(
这是一道 *2600 的 D2E,然鹅为啥我没想到呢?wtcl/dk
首先第一步我就没想到/kk,看到“恰好”二字我们可以想到一个东西叫做二项式反演(qwq 这个套路在刷多项式题时经常见到,可咋换个场景就想不到了呢?显然是我多项式白学了/doge)。我们设 \(f_k\) 表示恰好 \(k\) 个完美数的排列个数,\(g_k\) 表示钦定 \(k\) 个位置满足 \(|p_i-i|=1\),剩下随便乱填的方案数,那么显然对于某个有 \(x\) 个完美位置的排列,它被计入 \(g_y(y<x)\) 的次数为 \(\dbinom{x}{y}\)。
也就是说 \(g_k=\sum\limits_{i=k}^nf_i\dbinom{i}{k}\)。反演一下可得 \(f_k=\sum\limits_{i=k}^n(-1)^{i-k}\dbinom{i}{k}g_i\)。
故我们只需求出 \(g_i\) 就行了。
怎么求 \(g_i\) 呢?这时候就要用到 DP 了,我们设 \(dp_{i,j,x,y}\) 表示填好了前 \(i\) 个位置,钦定了 \(j\) 个位置满足 \(|p_i-i|=1\),\(x\) 表示 \(i\) 是否被选择,\(y\) 表示 \(i+1\) 是否被选择(这一步我又没想到,看来我 DP 也白学了/ww)。转移就分 \(i\) 不是被钦定为“完美位置”,\(p_i=i+1,p_i=i-1\) 三种情况转移即可,具体来说:
- \(dp_{i,j,0,0}=dp_{i-1,j,0,0}+dp_{i-1,j,1,0}+dp_{i-1,j-1,0,0}\)(放 \(i-1\) 或者不被钦定为完美位置)
- \(dp_{i,j,0,1}=dp_{i-1,j-1,0,0}+dp_{i-1,j-1,1,0}\)(\(y=1\),只能放 \(i+1\))
- \(dp_{i,j,1,0}=dp_{i-1,j,0,1}+dp_{i-1,j,1,1}+dp_{i-1,j-1,0,1}\)(放 \(i-1\) 或者不被钦定为完美位置)
- \(dp_{i,j,1,1}=dp_{i-1,j-1,0,1}+dp_{i-1,j-1,1,1}\)(\(y=1\),只能放 \(i+1\))
初始 \(dp_{1,0,0,0}=dp_{1,1,0,1}=1\)。
最后 \(g_k=(dp_{n,k,0,0}+dp_{n,k,1,0})·(n-k)!\)(\(n+1\) 不能被选择),时间复杂度 \(n^2\)。
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=1000;
const int MOD=1e9+7;
int n,m,dp[MAXN+5][MAXN+5][2][2];
int fac[MAXN+5],ifac[MAXN+5];
void add(int &x,int y){x+=y;if(x>=MOD) x-=MOD;}
int binom(int x,int y){return 1ll*fac[x]*ifac[y]%MOD*ifac[x-y]%MOD;}
int main(){
scanf("%d%d",&n,&m);dp[1][1][0][1]=dp[1][0][0][0]=1;
fac[0]=1;ifac[0]=ifac[1]=1;
for(int i=2;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
for(int i=2;i<=n;i++) for(int j=0;j<=i;j++){
if(j){
add(dp[i][j][0][0],dp[i-1][j-1][0][0]);
add(dp[i][j][1][0],dp[i-1][j-1][0][1]);
add(dp[i][j][0][1],dp[i-1][j-1][0][0]);
add(dp[i][j][0][1],dp[i-1][j-1][1][0]);
add(dp[i][j][1][1],dp[i-1][j-1][0][1]);
add(dp[i][j][1][1],dp[i-1][j-1][1][1]);
}
add(dp[i][j][0][0],dp[i-1][j][0][0]);
add(dp[i][j][0][0],dp[i-1][j][1][0]);
add(dp[i][j][1][0],dp[i-1][j][0][1]);
add(dp[i][j][1][0],dp[i-1][j][1][1]);
} int ans=0;
for(int i=m;i<=n;i++){
int ways=1ll*(dp[n][i][0][0]+dp[n][i][1][0])*fac[n-i]%MOD;
if((i-m)&1) ans=(ans-1ll*ways*binom(i,m)%MOD+MOD)%MOD;
else ans=(ans+1ll*ways*binom(i,m))%MOD;
} printf("%d\n",ans);
return 0;
}
Codeforces 285E - Positions in Permutations(二项式反演+dp)的更多相关文章
- CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)
Permutation p is an ordered set of integers p1, p2, ..., pn, consisting of n distinct positive in ...
- BZOJ3622 已经没有什么好害怕的了 二项式反演+DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3622 题解 首先显然如果 \(n - k\) 为奇数那么就是无解.否则的话,"糖果& ...
- CodeForces 340E Iahub and Permutations 错排dp
Iahub and Permutations 题解: 令 cnt1 为可以没有限制位的填充数字个数. 令 cnt2 为有限制位的填充数字个数. 那么:对于cnt1来说, 他的值是cnt1! 然后我们对 ...
- Codeforces 285 E. Positions in Permutations
\(>Codeforces \space 285 E. Positions in Permutations<\) 题目大意 : 定义一个长度为 \(n\) 的排列中第 \(i\) 个元素是 ...
- Codeforces 923E - Perpetual Subtraction(微积分+生成函数+推式子+二项式反演+NTT)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 首先考虑最朴素的 \(dp\),设 \(dp_{z,i}\) 表示经 ...
- P4859 已经没有什么好害怕的了(dp+二项式反演)
P4859 已经没有什么好害怕的了 啥是二项式反演(转) 如果你看不太懂二项式反演(比如我) 那么只需要记住:对于某两个$g(i),f(i)$ ---------------------------- ...
- 洛谷4859 BZOJ3622 已经没什么好害怕的了(DP,二项式反演)
题目链接: 洛谷 BZOJ 题目大意:有两个长为 $n$ 的序列 $a,b$,问有多少种重排 $b$ 的方式,使得满足 $a_i>b_i$ 的 $i$ 的个数比满足 $a_i<b_i$ 的 ...
- BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】
题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...
- 51nod 1518 稳定多米诺覆盖(容斥+二项式反演+状压dp)
[传送门[(http://www.51nod.com/Challenge/Problem.html#!#problemId=1518) 解题思路 直接算不好算,考虑容斥,但并不能把行和列一起加进去容斥 ...
随机推荐
- Machine learning (6-Logistic Regression)
1.Classification However, 2.Hypothesis Representation Python code: import numpy as np def sigmoid(z) ...
- [源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法
[源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法 目录 [源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法 0x00 摘要 0x01 工作线程主体 1.1 ...
- UVM RAL模型和内置seq
转载:UVM RAL模型:用法和应用_寄存器 (sohu.com) 在系统设计中通常会面临两大挑战:缩小技术节点的规模和上市时间(TTM,Time to Market).为了适应激烈的市场竞争,大多数 ...
- hdu 2830 Matrix Swapping II(额,,排序?)
题意: N*M的矩阵,每个格中不是0就是1. 可以任意交换某两列.最后得到一个新矩阵. 问可以得到的最大的子矩形面积是多少(这个子矩形必须全是1). 思路: 先统计,a[i][j]记录从第i行第j列格 ...
- 腾讯云星星海SA2云服务器特点
一.腾讯云星星海SA2云服务器特点 腾讯云深度定制AMD处理器.AMD EPYC ROME ,频率3.3Ghz.提供超大单核 L3 Cache.(基础频率2.6Ghz,睿频3.3Ghz).企业级服务器 ...
- 双链路接入(双出口)isp运营商(负载分担)
USG作为校园或大型企业出口网关可以实现内网用户通过两个运营商访问Internet,并保护内网不受网络攻击. 组网需求 某学校网络通过USG连接到Internet,校内组网情况如下: 校内用户主要分布 ...
- QuantumTunnel:Netty实现
接上一篇文章内网穿透服务设计挖的坑,本篇来聊一下内网穿透的实现. 为了方便理解,我们先统一定义使用到的名词: UserClient:用户客户端,真实的请求发起方: UserServer:内网穿透-用户 ...
- 『学了就忘』Linux基础命令 — 32、压缩和解压缩相关命令
目录 1.".zip"格式压缩 2.".gz"格式压缩 3.".bz2"格式压缩 4.".tar"格式打包 5.打包和压 ...
- SpringBoot 居然有 44 种应用启动器
啥是应用启动器?SpringBoot集成了spring的很多模块,比如tomcat.redis等等.你用SpringBoot搭建项目,只需要在pom.xml引入相关的依赖,和在配置文件中简单的配置就可 ...
- logstash写入kakfa数据丢失的问题
metricbeat采集系统指标,发送到logstash,再写入kafka,发现kafka中的数据不完整,只有某一个指标, 查找原因发现是logstash配置编码问题,如下: input { beat ...