Codeforces 题面传送门 & 洛谷题面传送门

首先对于这样的题目,我们应先考虑如何计算一个括号序列 \(s\) 的权值。一件非常显然的事情是,在深度最深的、是原括号序列的子序列的括号序列中,必定存在一个满足前面只由一段左括号,后面只由一段右括号组成,因此我们考虑枚举这中间位置在原括号序列中对应哪个位置,那么假设这个断点位于 \(i\) 和 \(i+1\) 之间,我们设 \(i\) 及之前有 \(x\) 个左括号,\(i+1\) 及之后有 \(y\)​​ 个右括号,那么显然以这个位置为端点的括号序列的深度就是 \(\min(x,y)\),注意到这里涉及一个 \(\min\),一脸不好直接维护的样子,不过注意一件事情,那就是你这个 \(i\) 每往后移一格,\(x-y\) 就会恰好增加 \(1\)​,也就是说必然恰好存在一个断点满足 \(x=y\),在此之前,\(x<y\)​,因此 \(\min(x,y)=x\),在此之后,\(x>y\),因此 \(\min(x,y)=y\),又因为 \(x\) 随 \(i\) 的增大单调不增,\(y\)​ 随 \(i\) 的增大单调不降,因此在这个断点前必然有 \(\min(x,y)<\) 断点处的 \(x\),在这个断点之后必然有 \(\min(x,y)>\) 断点处的 \(x\),因此这个断点处的 \(x\)​​ 就是该括号序列所有由一段左括号+一段右括号组成的合法括号序列中,深度最大的那一个,也就是说:

Conclusion. 一个括号序列的权值,等于其所有相邻位置 \(i,i+1\) 中,满足 \(i\) 及之前左括号个数等于 \(i+1\) 之后的右括号个数的 \(i\) 之前的左括号个数。

接下来此题就变成一个组合数学问题了,考虑枚举这个断点 \(i\),假设 \(i\) 前面问号个数为 \(a\),左括号个数为 \(b\),\(i+1\) 后面问号个数为 \(c\),右括号个数为 \(d\),那么这个点的贡献为:

\[\sum\limits_{i=0}^a(i+b)\dbinom{a}{i}\dbinom{c}{i+b-d}
\]

然后括号拆拆,组合恒等式推推:

\[\begin{aligned}
&\sum\limits_{i=0}^a(i+b)\dbinom{a}{i}\dbinom{c}{i+b-d}\\
=&\sum\limits_{i=0}^ai\dbinom{a}{i}\dbinom{c}{i+b-d}+b\sum\limits_{i=0}^a\dbinom{a}{i}\dbinom{c}{i+b-d}\\
=&\sum\limits_{i=0}^aa\dbinom{a-1}{i-1}\dbinom{c}{i+b-d}+b\sum\limits_{i=0}^a\dbinom{a}{i}\dbinom{c}{i+b-d}\\
=&a\sum\limits_{i=0}^a\dbinom{a-1}{a-i}\dbinom{c}{i+b-d}+b\sum\limits_{i=0}^a\dbinom{a}{a-i}\dbinom{c}{i+b-d}\\
=&a\dbinom{a-1+c}{a+b-d}+b\dbinom{a+c}{a+b-d}
\end{aligned}
\]

预处理一下简单算算即可。

const int MAXN=1e6;
const int MOD=998244353;
char s[MAXN+5];int n;
int fac[MAXN*2+5],ifac[MAXN*2+5];
void init_fac(int n){
for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i]*ifac[i-1]%MOD;
}
int binom(int x,int y){
if(x<0||y<0||x<y) return 0;
return 1ll*fac[x]*ifac[y]%MOD*ifac[x-y]%MOD;
}
int main(){
scanf("%s",s+1);n=strlen(s+1);init_fac(MAXN+5);int s1=0,s2=0,ans=0;
for(int i=1;i<=n;i++) s1+=(s[i]==')'),s2+=(s[i]=='?');
for(int i=1,x=0,l=0,c=0;i<=n;i++){
x+=(s[i]=='?');l+=(s[i]=='(');c+=(s[i]==')');int y=s2-x,r=s1-c;
ans=(ans+1ll*l*binom(x+y,y+r-l)+1ll*x*binom(y+x-1,y-l+r-1))%MOD;
} printf("%d\n",ans);
return 0;
}

Codeforces 1264D - Beautiful Bracket Sequence(组合数学)的更多相关文章

  1. CodeForces 670E Correct Bracket Sequence Editor(list和迭代器函数模拟)

    E. Correct Bracket Sequence Editor time limit per test 2 seconds memory limit per test 256 megabytes ...

  2. Codeforces 670E - Correct Bracket Sequence Editor - [线段树]

    题目链接:https://codeforces.com/contest/670/problem/E 题意: 给出一个已经匹配的括号串,给出起始的光标位置(光标总是指向某个括号). 有如下操作: 1.往 ...

  3. Codeforces 670E - Correct Bracket Sequence Editor - [链表]

    题目链接:https://codeforces.com/contest/670/problem/E 题意: 给出一个已经匹配的括号串,给出起始的光标位置(光标总是指向某个括号). 有如下操作: 1.往 ...

  4. Codeforces 670E - Correct Bracket Sequence Editor - [对顶栈]

    题目链接:https://codeforces.com/contest/670/problem/E 题意: 给出一个已经匹配的括号串,给出起始的光标位置(光标总是指向某个括号). 有如下操作: 1.往 ...

  5. CodeForces 670E Correct Bracket Sequence Editor

    链表,模拟. 写一个双向链表模拟一下过程. #pragma comment(linker, "/STACK:1024000000,1024000000") #include< ...

  6. CF1264D2 Beautiful Bracket Sequence

    我们枚举每两个字符的空档,统计一个空档左边有 \(l\) 个左括号, 右边有 \(r\) 个右括号,左边有 \(u\) 个问号,右边有 \(v\) 个问号. 则对于 \(p\) 的答案 \(ans_p ...

  7. CF1264D2 Beautiful Bracket Sequence (hard version)

    考虑\(D1\)的\(O(n^2)\),我们直接进行组合处理. 考虑在\(p\)这个位置,左边有\(l\)个(,右边有\(r\)个),左边有\(l\)个问号,右边有\(r\)个问号. 这个位置的贡献为 ...

  8. CF1264D1 Beautiful Bracket Sequence (easy version)

    考虑在一个确定的括号序列中,我们可以枚举中间位置,按左右最长延伸出去的答案计算. 我们很自然的思考,我们直接维护左右两边,在删除一些字符后能够延伸的最长长度. 我们设\(f_{i,j}\)为\(i\) ...

  9. Educational Codeforces Round 4 C. Replace To Make Regular Bracket Sequence 栈

    C. Replace To Make Regular Bracket Sequence 题目连接: http://www.codeforces.com/contest/612/problem/C De ...

随机推荐

  1. django 1.11.16之环境搭建

    django版本:django1.11.16  windows环境 python 3.6.3    !!!可先安装虚拟环境在进行环境搭建  1.安装django:pip install django= ...

  2. Less-25 preg_replace2

    Less-25: 核心语句: 各种回显也均有. 通过blacklist,我们可以发现,本题屏蔽了and和or. preg_replace函数中正则表达式后面的i是一个修饰符,代表正则匹配时不区分大小写 ...

  3. 【Java虚拟机9】类加载器之命名空间详解

    前言 前面介绍类加载器的时候,介绍了一下命名空间这个概念.今天就通过一个例子,来详细了解一下[类加载器的命名空间].然后通过这个例子,我们可以总结一下双亲委托模型的好处与优点. 例1(不删除class ...

  4. CentOS 用户与群组

    目录 1.用户管理 1.1.切换用户 1.2.添加用户 1.3.删除用户 1.4.修改用户 2.群组管理 2.1.查看群组 2.2.添加群组 2.3.删除群组 2.4.修改群组 1.用户管理 Linu ...

  5. [源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎

    [源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎 目录 [源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎 0x00 摘要 0x01 前文回顾 1.1 训 ...

  6. pagelayout中边界灵敏度动画时间kv

    <PageLayoutWidget>: # 默认是50dp 设置边界 border:'100dp' # 默认哪一页 page:2 # 设置翻页动画及持续时间 anim_kwargs:{'d ...

  7. 普通用户在命令终端使用Python脚本连入校园网

    普通用户在命令终端使用Python脚本连入校园网 想要连入校园网的步骤: 浏览器输入对应的IP地址,输入账号密码连网: 下载对应软件,输入账号密码连网: 而面对没有界面的服务器,而你又没有root权限 ...

  8. Scrum Meeting 0609

    零.说明 日期:2021-6-9 任务:简要汇报两日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 两日内已完成的任务 后两日计划完成的任务 困难 qsy PM&前端 完成前端功能 ...

  9. Canal的简单使用

    Canal的简单实用 一.背景 二.canal的工作原理 三.安装canal 1.mysql配置相关 1.检测binlog是否开启 2.mysql开启binlog 3.创建canal用户 2.cana ...

  10. hystrix的配置说明

    在我们的日常开发中,有些时候需要和第三方系统进行对接操作,或者调用其他系统的 api 接口,但是我们不能保证这些第三方系统的接口一定是稳定的,当系统中产生大量的流量来访问这些第三方接口,这些第三方系统 ...