Codeforces 1264D - Beautiful Bracket Sequence(组合数学)
首先对于这样的题目,我们应先考虑如何计算一个括号序列 \(s\) 的权值。一件非常显然的事情是,在深度最深的、是原括号序列的子序列的括号序列中,必定存在一个满足前面只由一段左括号,后面只由一段右括号组成,因此我们考虑枚举这中间位置在原括号序列中对应哪个位置,那么假设这个断点位于 \(i\) 和 \(i+1\) 之间,我们设 \(i\) 及之前有 \(x\) 个左括号,\(i+1\) 及之后有 \(y\) 个右括号,那么显然以这个位置为端点的括号序列的深度就是 \(\min(x,y)\),注意到这里涉及一个 \(\min\),一脸不好直接维护的样子,不过注意一件事情,那就是你这个 \(i\) 每往后移一格,\(x-y\) 就会恰好增加 \(1\),也就是说必然恰好存在一个断点满足 \(x=y\),在此之前,\(x<y\),因此 \(\min(x,y)=x\),在此之后,\(x>y\),因此 \(\min(x,y)=y\),又因为 \(x\) 随 \(i\) 的增大单调不增,\(y\) 随 \(i\) 的增大单调不降,因此在这个断点前必然有 \(\min(x,y)<\) 断点处的 \(x\),在这个断点之后必然有 \(\min(x,y)>\) 断点处的 \(x\),因此这个断点处的 \(x\) 就是该括号序列所有由一段左括号+一段右括号组成的合法括号序列中,深度最大的那一个,也就是说:
Conclusion. 一个括号序列的权值,等于其所有相邻位置 \(i,i+1\) 中,满足 \(i\) 及之前左括号个数等于 \(i+1\) 之后的右括号个数的 \(i\) 之前的左括号个数。
接下来此题就变成一个组合数学问题了,考虑枚举这个断点 \(i\),假设 \(i\) 前面问号个数为 \(a\),左括号个数为 \(b\),\(i+1\) 后面问号个数为 \(c\),右括号个数为 \(d\),那么这个点的贡献为:
\]
然后括号拆拆,组合恒等式推推:
&\sum\limits_{i=0}^a(i+b)\dbinom{a}{i}\dbinom{c}{i+b-d}\\
=&\sum\limits_{i=0}^ai\dbinom{a}{i}\dbinom{c}{i+b-d}+b\sum\limits_{i=0}^a\dbinom{a}{i}\dbinom{c}{i+b-d}\\
=&\sum\limits_{i=0}^aa\dbinom{a-1}{i-1}\dbinom{c}{i+b-d}+b\sum\limits_{i=0}^a\dbinom{a}{i}\dbinom{c}{i+b-d}\\
=&a\sum\limits_{i=0}^a\dbinom{a-1}{a-i}\dbinom{c}{i+b-d}+b\sum\limits_{i=0}^a\dbinom{a}{a-i}\dbinom{c}{i+b-d}\\
=&a\dbinom{a-1+c}{a+b-d}+b\dbinom{a+c}{a+b-d}
\end{aligned}
\]
预处理一下简单算算即可。
const int MAXN=1e6;
const int MOD=998244353;
char s[MAXN+5];int n;
int fac[MAXN*2+5],ifac[MAXN*2+5];
void init_fac(int n){
for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i]*ifac[i-1]%MOD;
}
int binom(int x,int y){
if(x<0||y<0||x<y) return 0;
return 1ll*fac[x]*ifac[y]%MOD*ifac[x-y]%MOD;
}
int main(){
scanf("%s",s+1);n=strlen(s+1);init_fac(MAXN+5);int s1=0,s2=0,ans=0;
for(int i=1;i<=n;i++) s1+=(s[i]==')'),s2+=(s[i]=='?');
for(int i=1,x=0,l=0,c=0;i<=n;i++){
x+=(s[i]=='?');l+=(s[i]=='(');c+=(s[i]==')');int y=s2-x,r=s1-c;
ans=(ans+1ll*l*binom(x+y,y+r-l)+1ll*x*binom(y+x-1,y-l+r-1))%MOD;
} printf("%d\n",ans);
return 0;
}
Codeforces 1264D - Beautiful Bracket Sequence(组合数学)的更多相关文章
- CodeForces 670E Correct Bracket Sequence Editor(list和迭代器函数模拟)
E. Correct Bracket Sequence Editor time limit per test 2 seconds memory limit per test 256 megabytes ...
- Codeforces 670E - Correct Bracket Sequence Editor - [线段树]
题目链接:https://codeforces.com/contest/670/problem/E 题意: 给出一个已经匹配的括号串,给出起始的光标位置(光标总是指向某个括号). 有如下操作: 1.往 ...
- Codeforces 670E - Correct Bracket Sequence Editor - [链表]
题目链接:https://codeforces.com/contest/670/problem/E 题意: 给出一个已经匹配的括号串,给出起始的光标位置(光标总是指向某个括号). 有如下操作: 1.往 ...
- Codeforces 670E - Correct Bracket Sequence Editor - [对顶栈]
题目链接:https://codeforces.com/contest/670/problem/E 题意: 给出一个已经匹配的括号串,给出起始的光标位置(光标总是指向某个括号). 有如下操作: 1.往 ...
- CodeForces 670E Correct Bracket Sequence Editor
链表,模拟. 写一个双向链表模拟一下过程. #pragma comment(linker, "/STACK:1024000000,1024000000") #include< ...
- CF1264D2 Beautiful Bracket Sequence
我们枚举每两个字符的空档,统计一个空档左边有 \(l\) 个左括号, 右边有 \(r\) 个右括号,左边有 \(u\) 个问号,右边有 \(v\) 个问号. 则对于 \(p\) 的答案 \(ans_p ...
- CF1264D2 Beautiful Bracket Sequence (hard version)
考虑\(D1\)的\(O(n^2)\),我们直接进行组合处理. 考虑在\(p\)这个位置,左边有\(l\)个(,右边有\(r\)个),左边有\(l\)个问号,右边有\(r\)个问号. 这个位置的贡献为 ...
- CF1264D1 Beautiful Bracket Sequence (easy version)
考虑在一个确定的括号序列中,我们可以枚举中间位置,按左右最长延伸出去的答案计算. 我们很自然的思考,我们直接维护左右两边,在删除一些字符后能够延伸的最长长度. 我们设\(f_{i,j}\)为\(i\) ...
- Educational Codeforces Round 4 C. Replace To Make Regular Bracket Sequence 栈
C. Replace To Make Regular Bracket Sequence 题目连接: http://www.codeforces.com/contest/612/problem/C De ...
随机推荐
- python 工具箱
strip() 方法可以从字符串去除不想要的空白符. print() BIF的file参数控制将数据发送/保存到哪里. finally组总会执行,而不论try/except语句中出现什么异常. 会向e ...
- 分割迭代器Spliterator源码文档翻译
前言 身体是革命的本钱,不舒服了2周,现在好点了. 学习JDK8的Stream,Spliterator这个分割迭代器是必须要重视的. Notes:下方蓝色文字是自己的翻译(如果有问题请指正).黑色文字 ...
- 【原创】Linux v4l2框架分析
背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...
- ScatterLayout:分散布局在py中的引用
""" ScatterLayout:分散布局 """ from kivy.app import App from kivy.uix.scat ...
- Java:Set接口小记
Java:Set接口小记 对 Java 中的 Set接口 与 其实现类,做一个微不足道的小小小小记 概述 public interface Set<E> extends Collectio ...
- 第2次 Beta Scrum Meeting
本次会议为Beta阶段第2次Scrum Meeting会议 会议概要 会议时间:2021年5月31日 会议地点:「腾讯会议」线上进行 会议时长:0.5小时 会议内容简介:对完成工作进行阶段性汇报:对下 ...
- 热身训练3 Palindrome
Palindrome 简要题意: 我们有一个字符串S,字符串的长度不超过500000. 求满足S[i]=S[2n−i]=S[2n+i−2](1≤i≤n)(n≥2)的子串个数. 分析: 我们能通过简 ...
- Linux多线程编程实例解析
Linux系统下的多线程遵循POSIX线程接口,称为 pthread.编写Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a.顺便说一下,Linux ...
- 设计模式(1-2)-动态代理(newProxyInstance)
上节设计模式(1-1)-代理模式,讲了代理模式的静态代理与动态代理的写法.本节,会从Proxy.newProxyInstance() 这个方法开始讲,上一节文末的那个class文件怎么一步步的来的. ...
- Java 16 新功能介绍
点赞再看,动力无限.Hello world : ) 微信搜「程序猿阿朗 」. 本文 Github.com/niumoo/JavaNotes 和 程序猿阿朗博客 已经收录,有很多知识点和系列文章. Ja ...