这道题就叫 T2 我有什么办法www

题目

题意简述

  给定一个字符串 \(s\),其长度为 \(n\),求无序子串对 \((u,v)\) 的个数,其中 \((u,v)\) 满足 \(u,v\) 均为回文串且出现位置相交。

数据规模

  \(n\le2\times10^6\),字符集为小写字母(于是测试数据里有神奇的'{'字符。

题解

  难得的水题呐!

  正难则反,首先求出总的回文子串对数,再减去出现位置不交的对数。

  对于前者,用 Manacher 或者 PAM 都可以轻松求出,这里用的 PAM。

  对于后者,记 \(f(i)\) 为原串中以 \(i\) 结尾的回文串个数,\(g(i)\) 为 \(s[i..n]\) 中的回文子串个数。那么不交的回文子串对的对数为:

\[\sum_{i=1}^{n-1}f(i)g(i+1)
\]

  \(f\) 和 \(g\) 亦能用 PAM 求出,这道题就解决啦~

  最后测试数据出锅,AC 失败qwq。

代码

#include <cstdio>
#include <cstring>
#include <algorithm> const int MAXN = 2e6, MOD = 998244353, INV2 = 499122177;
char s[MAXN + 5];
int preend[MAXN + 5], sufend[MAXN + 5]; class PalindromeAutomaton {
private:
int cnt, lst, ch[MAXN + 5][26], len[MAXN + 5], link[MAXN + 5], dep[MAXN + 5]; public:
PalindromeAutomaton (): cnt ( 1 ), lst ( 1 ), len { 0, -1 }, link { 1, 0 } {}
inline void clear () {
for ( int i = 0; i <= cnt; ++ i ) {
dep[i] = link[i] = len[i] = 0;
for ( int j = 0; j < 26; ++ j ) ch[i][j] = 0;
}
cnt = lst = 1, len[1] = -1, link[0] = 1;
}
inline int build ( const char* str, int* endcnt ) {
int ret = 0;
for ( int i = 1; str[i]; ++ i ) {
int cid = str[i] - 'a', p = lst;
for ( ; str[i] ^ str[i - len[p] - 1]; p = link[p] );
if ( ! ch[p][cid] ) {
int cur = ++ cnt, q = link[p]; len[cur] = len[p] + 2;
for ( ; str[i] ^ str[i - len[q] - 1]; q = link[q] );
dep[cur] = dep[link[cur] = ch[q][cid]] + 1, ch[p][cid] = cur;
}
ret = ( ret + ( endcnt[i] = dep[lst = ch[p][cid]] ) ) % MOD;
}
return ret;
}
} pam; int main () {
scanf ( "%s", s + 1 );
int ans = pam.build ( s, preend ), n = strlen ( s + 1 );
ans = ( ans * ( ans - 1ll ) % MOD * INV2 % MOD + MOD ) % MOD;
pam.clear (), std :: reverse ( s + 1, s + n + 1 );
pam.build ( s, sufend ), std :: reverse ( sufend + 1, sufend + n + 1 );
for ( int i = n - 1; i; -- i ) sufend[i] = ( sufend[i + 1] + sufend[i] ) % MOD;
for ( int i = 1; i < n; ++ i ) ans = ( ( ans - 1ll * preend[i] * sufend[i + 1] % MOD ) % MOD + MOD ) % MOD;
printf ( "%d\n", ans );
return 0;
}

Solution -「NOI.AC 省选膜你赛」T2的更多相关文章

  1. Solution -「NOI.AC 省选膜你赛」array

    题目 题意简述   维护一个长度为 \(n\) 的序列 \(\{a_n\}\),并给出 \(q\) 个操作: 将下标为 \(x\) 的数修改为 \(y\). 给定 \(l,r,k\),求最大的 \(m ...

  2. Solution -「NOI.AC 省选膜你赛」寄蒜几盒

    题目 题意简述   给定一个含有 \(n\) 个顶点的凸多边形( \(n\) 是偶数),对于每一对相对的边(即中间有 \(\frac{n}2-1\) 条其它边),延长它们以将平面分割为多块,并把包含原 ...

  3. Solution -「NOI.AC 省选膜你赛」union

    题目 题意简述   给定两颗树 \(A,B\),\(A\) 中的任一结点 \(u\) 与 \(B\) 中的任一结点 \(v\) 都有一个关系值 \(f(u,v)\),初始为 \(0\).再给出 \(q ...

  4. cdcqの省选膜你赛

    cdcqの省选膜你赛 比赛当天因为在杠hnoi2016的大数据结构没有参加,今天补了一下.挺好玩的虽然不看一句话题意的话真的卡读题 此生无悔入东方,来世愿生幻想乡 2651. 新史「新幻想史 -现代史 ...

  5. Solution -「NOI 2021」「洛谷 P7740」机器人游戏

    \(\mathcal{Description}\)   Link.   自己去读题面叭~ \(\mathcal{Solution}\)   首先,参悟[样例解释 #2].一种暴力的思路即为钦定集合 \ ...

  6. Solution -「NOI 2020」「洛谷 P6776」超现实树

    \(\mathcal{Description}\)   Link.   对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \( ...

  7. Solution -「NOI 模拟赛」彩色挂饰

    \(\mathcal{Description}\)   给定一个含 \(n\) 个点 \(m\) 条边的简单无向图,设图中最大点双的大小为 \(s\),则保证 \(s\le6\).你将要用 \(k\) ...

  8. Solution -「NOI 模拟赛」出题人

    \(\mathcal{Description}\)   给定 \(\{a_n\}\),求一个 \(\{b_{n-1}\}\),使得 \(\forall x\in\{a_n\},\exists i,j\ ...

  9. Solution -「NOI 2016」「洛谷 P1587」循环之美

    \(\mathcal{Description}\)   Link.   给定 \(n,m,k\),求 \(x\in [1,n]\cap\mathbb N,y\in [1,m]\cap \mathbb ...

随机推荐

  1. asyncio异步编程

    1. 协程 协程不是计算机提供,程序员认为创造 协程(Coroutine),也可以被称为微线程,是一种用户态内的上下文切换技术,其实就是一个线程实现代码块相互切换执行.例如: def func1(): ...

  2. SpringBoot学习笔记三之表述层

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6803355920697917965/ 首先配置learn-admin-webui中的web.xml文件 配置Con ...

  3. 解决maven每次更新都编程java1.5

    Maven: 每次更新Maven Project ,JAVA 版本都变为1.5 本文转载自:http://www.cnblogs.com/Hxinguan/p/6132446.html 问题: 1.创 ...

  4. vue 自动生成菜单

    import constant from './const' export function getRouters (files) { let filenames = files.keys() let ...

  5. javascript中什么时候要用\来转义

    1.定义字符串的单引号或双引号里的同符号或字符串内回车换行,比如A: a = "<a href=\"...\">a</a>"; B: a ...

  6. GoLang设计模式19 - 桥接模式

    桥接模式是一种结构型设计模式,通过桥接模式可以将抽象部分和它的实现部分分离.这看着有点儿奇怪,接下来会作详细说明. 桥接模式建议将一个较大的类拆分成两中角色. 抽象角色 - 抽象角色是一个接口.它的子 ...

  7. github与gitlab创建新仓库

    github创建新仓库 然后根据下一页的命令提示进行即可 gitlab创建新仓库 git init git remote add origin git@***.***.**.**:user/proje ...

  8. 【解决了一个小问题】golang samara的kafka客户端中使用错误版本号导致初始化失败

    发现在如下代码中存储kafka生产者初始化失败: config.Version = sarama.V0_10_2_1 //V2_2_0_0 producer, err := sarama.NewSyn ...

  9. 【记录一个问题】redis中执行事务出现错误“EXECABORT Transaction discarded because of previous errors”

    执行事务的大致代码如下: redisClient := GetRedisClient() pipe := redisClient.TxPipeline() err := pipe.ZAdd(k, ar ...

  10. 【小记录】cv::cuda::Stream中取出cudaStream_t并用于核函数的计算

    以下是找到的代码 1 cv::cuda::Stream stream; 2 cudaStream_t s = cv::cuda::StreamAccessor::getStream(stream); ...