Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\)
设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排序,则重复冒泡排序零次或多次,直到存在某个位置 \(p\in[l,r)\),满足 \(\max_{i=l}^p\{a_i\}<\min_{i=p+1}^r\{a_i\}\),则递归入 \([l,p]\) 和 \((p,r]\),直到区间长度为 \(1\) 时停止。求所有冒泡排序所操作的区间长度之和。
\(n\le10^5\),保证 \(\{a_n\}\) 无重复数字。
\(\mathcal{Solution}\)
可以发现“递归入两个区间”是对冒泡排序一个并没有什么用的剪枝——两个区间之间一定不会出现元素交换。那么这个剪枝完全可以忽略,算法等价于不停对 \([1,n]\) 冒泡直到序列有序,唯一的区别仅有代价不同。但好处在于,以忽略递归的排序算法为基础,容易求出每个位置什么时候成为分割点 \(p\)——即不停对 \([1,n]\) 冒泡,什么时候 \(\forall a_j\in[1,i],~j\in[1,i]\):这个值就是离 \(i\) 最远的满足 \(a_j\in[1,i]\) 的 \(j\) 到 \(i\) 的距离,倒着扫一遍 BIT 维护即可。
求出每个位置成为分隔点的最早时间 \(t_i\),接下来的做法包括但不限于:
- 按题意模拟!启发式分裂模拟排序算法,\(\mathcal O(n\log n)\);
- 单调栈!扫一遍就行,\(\mathcal O(n)\);
- 算每个点的贡献!排序 \(\max\{t_{i-1},t_{i+1}\}\) 次之后,\(i\) 才会变成长度为 \(1\) 的区间,这就是对答案的贡献,\(\mathcal O(n)\)。
\(\mathcal{Code}\)
按题意模拟好啊,脑细胞多精贵啊。(
注意洛谷原题中,算法会先冒泡一次再检查分割点,细节需要改改。
/*~Rainybunny~*/
#include <bits/stdc++.h>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
inline char fgc() {
static char buf[1 << 17], *p = buf, *q = buf;
return p == q && ( q = buf + fread( p = buf, 1, 1 << 17, stdin ), p == q )
? EOF : *p++;
}
template<typename Tp = int>
inline Tp rint() {
Tp x = 0; int f = 1; char s = fgc();
for ( ; s < '0' || '9' < s; s = fgc() ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = fgc() ) x = x * 10 + ( s ^ '0' );
return x * f;
}
template<typename Tp>
inline void wint( Tp x ) {
if ( x < 0 ) putchar( '-' ), x = -x;
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
}
inline void chkmax( int& a, const int b ) { a < b && ( a = b ); }
inline int imin( const int a, const int b ) { return a < b ? a : b; }
const int MAXN = 1e5, MAXLG = 16;
int n, a[MAXN + 5], dc[MAXN + 5], st[MAXN + 5][MAXLG + 5], bitw[MAXN + 5];
long long ans;
struct BIT {
int val[MAXN + 5];
inline void upd( int x, const int v ) {
for ( ; x <= n; x += x & -x ) chkmax( val[x], v );
}
inline int ask( int x ) {
int ret = 0;
for ( ; x; x -= x & -x ) chkmax( ret, val[x] );
return ret;
}
} bit;
inline int qmin( const int l, const int r ) {
int k = bitw[r - l + 1];
return imin( st[l][k], st[r - ( 1 << k ) + 1][k] );
}
inline void solve( const int l, const int r, const int las ) {
if ( l == r ) return ;
int firc = qmin( l, r - 1 ), p = 0;
for ( int len = 0; /* solution always exists */; ++len ) {
if ( st[l + len][0] == firc ) { p = l + len; break; }
if ( st[r - 1 - len][0] == firc ) { p = r - len - 1; break; }
}
ans += ( r - l + 1ll ) * ( firc - las );
solve( l, p, firc ), solve( p + 1, r, firc );
}
int main() {
freopen( "sort.in", "r", stdin );
freopen( "sort.out", "w", stdout );
n = rint();
rep ( i, 1, n ) a[i] = dc[i] = rint();
std::sort( dc + 1, dc + n + 1 ); // no need to unique.
// assert( std::unique( dc + 1, dc + n + 1 ) - dc - 1 == n );
rep ( i, 1, n ) a[i] = std::lower_bound( dc + 1, dc + n + 1, a[i] ) - dc;
bit.upd( a[n], n );
per ( i, n - 1, 1 ) {
if ( ( st[i][0] = bit.ask( i ) ) ) st[i][0] -= i;
bit.upd( a[i], i );
}
rep ( i, 2, n ) bitw[i] = bitw[i >> 1] + 1;
for ( int j = 1; 1 << j <= n; ++j ) {
rep ( i, 1, n - ( 1 << j ) + 1 ) {
st[i][j] = imin( st[i][j - 1], st[i + ( 1 << j >> 1 )][j - 1] );
}
}
solve( 1, n, 0 );
wint( ans ), putchar( '\n' );
return 0;
}
Solution -「洛谷 P4372」Out of Sorts P的更多相关文章
- Note/Solution -「洛谷 P5158」「模板」多项式快速插值
\(\mathcal{Description}\) Link. 给定 \(n\) 个点 \((x_i,y_i)\),求一个不超过 \(n-1\) 次的多项式 \(f(x)\),使得 \(f(x ...
- Solution -「洛谷 P4198」楼房重建
\(\mathcal{Description}\) Link. 给定点集 \(\{P_n\}\),\(P_i=(i,h_i)\),\(m\) 次修改,每次修改某个 \(h_i\),在每次修改后 ...
- Solution -「洛谷 P6577」「模板」二分图最大权完美匹配
\(\mathcal{Description}\) Link. 给定二分图 \(G=(V=X\cup Y,E)\),\(|X|=|Y|=n\),边 \((u,v)\in E\) 有权 \(w( ...
- Solution -「洛谷 P6021」洪水
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个点的带点权树,删除 \(u\) 点的代价是该点点权 \(a_u\).\(m\) 次操作: 修改单点点权. ...
- Solution -「洛谷 P4719」「模板」"动态 DP" & 动态树分治
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个结点的带权树,\(m\) 次单点点权修改,求出每次修改后的带权最大独立集. \(n,m\le10^5 ...
- Solution -「洛谷 P5236」「模板」静态仙人掌
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的仙人掌,\(q\) 组询问两点最短路. \(n,q\le10^4\),\(m\ ...
- Solution -「洛谷 P4320」道路相遇
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),询问 \(u\) 到 ...
- Solution -「洛谷 P5827」边双连通图计数
\(\mathcal{Description}\) link. 求包含 \(n\) 个点的边双连通图的个数. \(n\le10^5\). \(\mathcal{Solution}\) ...
- Solution -「洛谷 P5827」点双连通图计数
\(\mathcal{Description}\) link. 求有 \(n\) 个结点的点双连通图的个数,对 \(998244353\) 取模. \(n\le10^5\). \(\mat ...
随机推荐
- react中Fragment组件
什么是Fragment?在我们定义组件的时候return里最外层包裹的div往往不想渲染到页面,那么就要用到我们的Fragment组件了,具体使用如下: import React, { Compone ...
- Eureka原理与架构
一.原理图 Eureka:就是服务注册中心(可以是一个集群),对外暴露自己的地址 提供者:启动后向Eureka注册自己信息(地址,提供什么服务) 消费者:向Eureka订阅服务,Eureka会将对应服 ...
- Zookeeper绍二(分布式锁介)
一.为什么会有分布式锁? 在多线程环境下,由于上下文的切换,数据可能出现不一致的情况或者数据被污染,我们需要保证数据安全,所以想到了加锁. 所谓的加锁机制呢,就是当一个线程访问该类的某个数据时,进行保 ...
- Go Error 嵌套到底是怎么实现的?
原文链接: Go Error 嵌套到底是怎么实现的? Go Error 的设计哲学是 「Errors Are Values」. 这句话应该怎么理解呢?翻译起来挺难的.不过从源码的角度来看,好像更容易理 ...
- 在Linux系统(centos7)中,安装VScode,并在VScode上编写HTML网页
[实验目的] 在Linux系统中,搭建编写HTML网页的环境.在VS code官网上,下载VS code安装程序,进行安装.在VS code软件中编写HTML页面,并正确运行. [实验步骤] 1) ...
- 2月10日 体温APP开发总结
1.Java代码 1.user package bean;public class User { private String name; private String riqi; private S ...
- C++构造函数语义学(二)(基于C++对象模型)
带有虚函数的情况. 下面情况编译器也会在需要的时候为其合成. 1.如果一个类自己声明为虚函数. 1 #include<iostream> 2 using namespace std; 3 ...
- golang中math常见数据数学运算
package main import ( "fmt" "math" ) func main() { fmt.Println(math.Abs(-19)) // ...
- 返回值ModelAndView
- a 标签一些特殊用法
发邮件 <a href="mailto:youemail@mail.com?subject=邮件标题&body=邮件内容">告诉我们</a> 打电话 ...