\(\mathcal{Description}\)

  Link.

  给定序列 \(\{a_n\}\) 和 \(m\) 个操作,第 \(i\) 个操作有 \(p_i\) 的概率将 \([l_i,r_i]\) 内的元素 \(+1\)。且保证任意两个区间要么不交,要么有包含关系。求所有操作完成后序列最大值的期望。

  \(n\le10^5\),\(m\le5000\)。

\(\mathcal{Solution}\)

  首先应当知道,\(E(\max\{a_i\})\not=\max\{E(a_i)\}\)(不然还需要做嘛 qwq),这是由于每个数的期望值是不独立的。

  从题目奇怪的限制入手——各区间构成树形关系,整个序列上的区间构成一片森林。不妨加入第 \(m+1\) 个操作区间,满足 \(l_{m+1}=1,r_{m+1}=n,p_{m+1}=0\),区间就构成一棵严格的树了。

  考虑树上 DP,令 \(f(u,i)\) 表示操作完 \(u\) 子树内的所有操作后,区间最大值 \(\le i\) 的概率。同时注意到 \(m\) 相较于值域大小 \(10^9\) 非常小,所以很多数是不可能成为最大值的。记 \(u\) 子树所代表的区间内初始元素的最大值 \(mx_u\),不难发现仅有 \(k\in[mx_u,mx_u+m]\) 的 \(f(u,k)\) 有意义,而其余 \(f(u,k)\) 要不为 \(0\) 要不为 \(1\),没有记录的必要。那么状态就能优化为操作完 \(u\) 子树内的所有操作后,区间最大值 \(\le i+mx_u\) 的概率,并保证 \(i\in[0,m]\)。转移就简单了:

\[f(u,i)=p_i\prod_vf(v,mx_u-mx_v+i-1)+(1-p_i)\prod_vf(v,mx_u-mx_v+i)
\]

  注意单独计算 \(f(u,0)\),因为其前一项应取 \(0\)。

  复杂度 \(\mathcal O(n\log n+m^2)\)。(前一项为预处理 ST 表复杂度。)

\(\mathcal{Code}\)

#include <cstdio>
#include <vector>
#include <algorithm> const int MAXN = 1e5, MAXLG = 16, MAXM = 5000;
int n, m, mxa, a[MAXN + 5], lg[MAXN + 5], st[MAXN + 5][MAXLG + 5];
std::vector<int> tree[MAXM + 5];
double f[MAXM + 5][MAXM + 5]; inline void chkmax ( int& a, const int b ) { if ( a < b ) a = b; } inline int min_ ( const int a, const int b ) { return a < b ? a : b; } inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} inline int qmax ( const int l, const int r ) {
int k = lg[r - l + 1], ret = st[l][k];
return chkmax ( ret, st[r - ( 1 << k ) + 1][k] ), ret;
} struct Section {
int l, r, mx; double p;
inline void read () {
l = rint (), r = rint (), mx = qmax ( l, r );
scanf ( "%lf", &p );
}
inline bool operator < ( const Section t ) const {
return l ^ t.l ? l < t.l : r > t.r;
}
} sec[MAXM + 5]; inline void solve ( const int u ) {
for ( int v: tree[u] ) solve ( v );
f[u][0] = 1 - sec[u].p;
for ( int v: tree[u] ) f[u][0] *= f[v][sec[u].mx - sec[v].mx];
for ( int i = 1; i <= m; ++ i ) {
double p = 1, q = 1;
for ( int v: tree[u] ) {
p *= f[v][min_ ( sec[u].mx + i - sec[v].mx - 1, m )];
q *= f[v][min_ ( sec[u].mx + i - sec[v].mx, m )];
}
f[u][i] = sec[u].p * p + ( 1 - sec[u].p ) * q;
}
} int main () {
n = rint (), m = rint ();
for ( int i = 1; i <= n; ++ i ) chkmax ( mxa, a[i] = st[i][0] = rint () );
for ( int i = 2; i <= n; ++ i ) lg[i] = lg[i >> 1] + 1;
for ( int j = 1; 1 << j <= n; ++ j ) {
for ( int i = 1; i + ( 1 << j ) - 1 <= n; ++ i ) {
chkmax ( st[i][j] = st[i][j - 1], st[i + ( 1 << j >> 1 )][j - 1] );
}
}
for ( int i = 1; i <= m; ++ i ) sec[i].read ();
sec[++ m] = { 1, n, qmax ( 1, n ), 0.0 };
std::sort ( sec + 1, sec + m + 1 );
for ( int i = 2; i <= m; ++ i ) {
for ( int j = i - 1; j; -- j ) {
if ( sec[j].l <= sec[i].l && sec[i].r <= sec[j].r ) {
tree[j].push_back ( i );
break;
}
}
}
solve ( 1 );
double ans = 0;
for ( int i = 0; i <= m; ++ i ) {
ans += ( i + mxa ) * ( f[1][i] - f[1][i - 1] );
}
printf ( "%.12f\n", ans );
return 0;
}

Solution -「CF 494C」Helping People的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  6. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  7. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

随机推荐

  1. react中create-react-app配置antd按需加载(方法二)

    1.yarn add babel-plugin-import 2.在根目录下的package.json下的bable中添加相应代码 "babel": { "presets ...

  2. 深入理解Java虚拟机之自己编译JDK

    题外话 最近在阅读<深入理解Java虚拟机>,其中有一小节实战是自己编译JDK,实际操作下来后遇到问题不少,为此特地记录,也希望可以给大家带来一些参考! 前置准备 平台及工具:Window ...

  3. JQuery iframe 刷新效果

    假如有一个选项卡.tab-content,里面有多个iframe 只刷新显示的那个iframe,所以要用到:visible $('.tab-content iframe:visible')[0].co ...

  4. C#winform控件序列化,反序列化

    using System; using System.Collections.Generic; using System.Drawing; using System.IO; using System. ...

  5. Manacher算法求解回文字符串

    Manacher算法可以在\(O(N)\)时间内求解出一个字符串的所有回文子串(正反遍历相同的字串). 注:回文串显然有两种,一种是奇数长度,如abczcba,有一个中心字符z:另外一种是偶数个长度, ...

  6. Hbuilder将移动app或者web项目打包

    1. 直接将项目 npm run build 打包生成dist文件 2.将dist文件放到Hbuilderx或者Hbuilder里面,这个时候你会发现他是w的,需要将其转换为A 点击该dist项目右键 ...

  7. golang中的go get命令

    ### 下载指定版本 go get k8s.io/klog@v1.0.0 go get 命令可以借助代码管理工具通过远程拉取或更新代码包及其依赖包,并自动完成编译和安装. 这个命令在内部实际上分成了两 ...

  8. postgresql安装(windows)

    官网: https://www.postgresql.org/ 下载页面:https://www.enterprisedb.com/downloads/postgres-postgresql-down ...

  9. SaltStack 的基本概念与工作原理 架构设计

    随着云计算技术的快速普及与发展,越来越多的企业开始学习和搭建自己的云平台代替传统的 IT 交付模式,企业的 IT 环境也随之越来越复杂,常规的运维方法与技术已经无法满足现在云环境中系统的配置与变更.基 ...

  10. python30day

    内容回顾 tcp协议的多人多次通信 和一个人通信多说句话 和一个人聊完再和其他人聊 bind 绑定一个id和端口 socket()tcp协议的server listen 监听,代表socket服务的开 ...