\(\mathcal{Description}\)

  Link.

  \(n\) 个公司,每个公司可能独立或者附属于另一个公司。初始时,每个公司附属于 \(a_i\)(\(a_i=-1\) 表示该公司独立)。不存在两级及以上的附属关系。每次事件随机选取两个独立的公司,使其中一个公司所拥有的附属公司全部独立,并且该公司成为另一个公司的附属。求使仅存在一个独立公司的期望操作次数。对 \(10^9+7\) 取模。

  \(n\le500\)。

\(\mathcal{Solution}\)

  奇怪的解题姿势增加了!

  记一个公司的势能函数 \(\phi(i)=2^{s_i}-1\),其中 \(s_i\) 为该公司拥有的结点个数。并记 \(\phi(S)\) 为局面 \(S\) 的势能函数,有:

\[\phi(S)=\sum_{i=1}^n\phi(i)
\]

  那么,结束局面 \(T\) 的势能函数 \(\phi(T)=2^{n-1}-1\)。

  考虑单次事件对势能的影响。对于局面 \(S\) 中一次作用在两个独立公司 \(u,v\) 上的事件,有:

\[\begin{align}
E(\Delta\phi)&=E(\phi(S'))-\phi(S)\\
&=\frac{1}2((2^{s_u}-1)+(2^{s_v}-1))-(2^{s_u-1}-1)-(2^{2_v-1}-1)\\
&=-1+2\\
&=1
\end{align}
\]

  一次事件在期望意义下会让局面的势能 \(+1\)!所以期望事件个数就是势能的期望变化次数。即:

\[\phi(T)-\phi(S)
\]

  其中 \(S\) 是初始局面,\(T\) 即上文结束局面。输出这个值就好啦!

  复杂度 \(\mathcal O(n)\)。

\(\mathcal{Code}\)

#include <cstdio>

const int MAXN = 500, MOD = 1e9 + 7;
int n, d[MAXN + 5]; inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
} int main () {
scanf ( "%d", &n );
int ans = ( MOD + qkpow ( 2, n - 1 ) - 1 ) % MOD;
for ( int i = 1, f; i <= n; ++ i ) {
scanf ( "%d", &f );
if ( ~ f ) d[i] = -1, ++ d[f];
}
for ( int i = 1; i <= n; ++ i ) {
if ( ~ d[i] ) {
ans = ( ans - qkpow ( 2, d[i] ) + 1 + MOD ) % MOD;
}
}
printf ( "%d\n", ans );
return 0;
}

Solution -「CF 1025G」Company Acquisitions的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  6. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  7. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

随机推荐

  1. Go语言系列之标准库strconv

    Go语言中strconv包实现了基本数据类型和其字符串表示的相互转换. strconv包 strconv包实现了基本数据类型与其字符串表示的转换,主要有以下常用函数: Atoi().Itia().pa ...

  2. 软件开发架构与网络之OSI七层协议(五层)

    本期内容概要 python回顾 软件开发架构 网络理论前瞻 osi七层协议(五层) 以太网协议 IP协议 port协议 交换机 路由器 局域网 广域网 TCP协议 三次握手 四次挥手 UDP协议 内容 ...

  3. 微信小程序云开发指南

    一.初识云开发 官方文档 小程序·云开发是微信团队联合腾讯云推出的专业的小程序开发服务. 开发者可以使用云开发快速开发小程序.小游戏.公众号网页等,并且原生打通微信开放能力. 开发者无需搭建服务器,可 ...

  4. 使用Flightradar24's CesiumJS App追踪世界商用航线

    Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ 每天,超过10万架商业航班在世界各地运送乘客.在任何特定时刻,您 ...

  5. 如何在Xamarin中快速集成Android版认证服务-手机号码篇

    Xamarin作为微软提供的移动服务多系统开发平台,成为很多开发者首选的应用开发平台.AppGallery Connect(以下简称AGC)也在逐步的支持Xamarin的SDK.认证服务也是支持Xam ...

  6. default和delete

    在C++中,有四类特殊的成员函数,分别为:默认构造函数,默认析构函数,默认拷贝构造函数,默认赋值运算符.他们的作用为创建.初始化.销毁.拷贝对象. 虽然在类A中什么都没有定义,但是编译会通得过,因为编 ...

  7. kindle序列号对应版本

    序列号前缀 型号全称 型号简称 支持越狱 B001, Kindle 1 K1 - B101 B002 Kindle 2 U.S. (Sprint) K2 - B003 Kindle 2 Interna ...

  8. 删除修改docker网络环境

    安装工具包 yum install bridge-utils -y 设置docker0 ip网段 ip link set docker0 down brctl delbr docker0 brctl ...

  9. Linux定时执行.sh脚本

    因为测试ffmpeg推流用flv方式的话没有做自动断流,所以要先用.sh脚本来执行关流,降低CPU和其他资源占用 首先编写.sh文件 #! /bin/bash echo "kill ffmp ...

  10. Mac OS Fusion Linux虚拟机网络设置

    1.设定网络为nat 2.ifconfig查看mac机的ip 3.进入虚拟机设定网络,手动指定自己ip为mac机网段ip,xxx.xxx.xxx.2是固定的路由及DNS的ip 4.关闭再打开网络即可访 ...