\(\mathscr{Description}\)

  Link.

  求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最大化 \(|S|\)。

  \(n\le10^6\)。

\(\mathscr{Solution}\)

  爆搜打出 \(20\) 以内的表,发现 \(|S|\approx n\)。先研究偶数 \(n=2k\):

\[\begin{aligned}
\prod_{i=1}^{2k} i! &= \left( \prod_{i=1}^k i! \right)^2 \prod_{i=1}^k 2i\\
&= \left( \prod_{i=1}^k i! \right)^2 2^k k!.
\end{aligned}
\]

那么若 \(2^kk!\) 是完全平方数,有 \(|S|=n\);否则若 \(2^k\) 是完全平方数,有 \(|S|=n-1\),删去 \(k!\) 即可;否则至少有 \(|S|=n-2\),只需要删去 \(2!\) 和 \(k!\)。继而,对于奇数 \(n=2k+1\),答案至少为 \(n-3\)。

  所以,我们只需要判断 \(|S|\) 能否取 \(n,n-1,n-2\)。这里有个 trick:异或哈希。对于每个素数 \(p\),独立随机生成 hash 值 \(h(p)\),并定义 \(h(ab)=h(a)\oplus h(b)\),这样就能对每个数建立 hash,若两数 \(x,y\) 的唯一分解中指数奇偶性完全一致,就应有 \(h(x)=h(y)\)。利用这个 trick,求出所有 \(h(i!)\) 后顶多拿 unordered map 判一判就能完成 \(S\) 的取值判断了。复杂度为 \(\mathcal O(n)\)(假定 std::unordered_map 为 \(\mathcal O(1)\) 操作)。

\(\mathscr{Code}\)​

/*+Rainybunny+*/

#include <bits/stdc++.h>

#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i) typedef unsigned long long ULL; const int MAXN = 1e6;
int n, pn, pr[MAXN + 5];
bool npr[MAXN + 5];
ULL hnum[MAXN + 5], hfac[MAXN + 5];
std::unordered_map<ULL, int> buc; inline void init() {
std::mt19937_64 emt(time(0) ^ 20120712);
rep (i, 2, n) {
if (!npr[i]) hnum[pr[++pn] = i] = emt();
for (int j = 1, t; j <= pn && (t = i * pr[j]) <= n; ++j) {
npr[t] = true, hnum[t] = hnum[i] ^ hnum[pr[j]];
if (!(i % pr[j])) break;
}
}
rep (i, 1, n) hfac[i] = hfac[i - 1] ^ hnum[i];
} int main() {
scanf("%d", &n), init(); ULL h = 0;
rep (i, 1, n) h ^= hfac[i]; if (!h) {
printf("%d\n", n);
rep (i, 1, n) printf("%d%c", i, i < n ? ' ' : '\n');
return 0;
} rep (i, 1, n) if (h == hfac[i]) {
printf("%d\n", n - 1);
rep (j, 1, n) if (i != j) printf("%d ", j);
return putchar('\n'), 0;
} rep (i, 1, n) buc[hfac[i]] = i;
rep (i, 1, n) if (buc.count(h ^ hfac[i])) {
printf("%d\n", n - 2); int tmp = buc[h ^ hfac[i]];
rep (j, 1, n) if (j != i && j != tmp) printf("%d ", j);
return putchar('\n'), 0;
} printf("%d\n", n - 3);
rep (i, 1, n - 1) if (i != 2 && i != n >> 1) printf("%d ", i);
return putchar('\n'), 0;
}

Solution -「CF 1622F」Quadratic Set的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  3. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  4. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  5. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  6. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  7. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  8. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

  9. Solution -「CF 487E」Tourists

    \(\mathcal{Description}\)   Link.   维护一个 \(n\) 个点 \(m\) 条边的简单无向连通图,点有点权.\(q\) 次操作: 修改单点点权. 询问两点所有可能路 ...

随机推荐

  1. js监听网页页面滑动滚动事件,实现导航栏自动显示或隐藏

    /** * 页面滑动滚动事件 * @param e *///0为隐藏,1为显示var s = 1;function scrollFunc(e) { // e存在就用e不存在就用windon.event ...

  2. antd-vue中给table表格整行加点击事件

    <a-table :columns="columns" :dataSource="data" :loading="loading" : ...

  3. centos7 修改网卡信息

    修改网卡配置文件 vim /etc/sysconfig/network-scripts/ifcfg-eth0 有一些不是eth0 也可能是ens33 修改完成后使用下面命令进行重启 systemctl ...

  4. 实验 1 :Mininet 源码安装和可视化拓扑

    实验 1 : Mininet 源码安装和可视化拓扑工具 一 .实验目的 掌握 Mininet 的源码安装方法和 miniedit 可视化拓扑生成工具. 二 .实验任务 使用源码安装 Mininet 的 ...

  5. Go语言系列之标准库path/filepath

    一.Path包 import "path" path实现了对斜杠分隔的路径进行操作的函数. func IsAbs(path string) bool // 判断是否是一个绝对路径 ...

  6. 机器学习|线性回归三大评价指标实现『MAE, MSE, MAPE』(Python语言描述)

    原文地址 ?传送门 对于回归预测结果,通常会有平均绝对误差.平均绝对百分比误差.均方误差等多个指标进行评价.这里,我们先介绍最常用的3个: 平均绝对误差(MAE) 就是绝对误差的平均值,它的计算公式如 ...

  7. [流畅的Python]第一章数据模型

    这些来自同一家出版社的动物书 像是计算机科学界一盏盏指路明灯 余幼时 初试读 学浅 以为之晦涩难懂 像是老学究咬文嚼字 现在看起来还有些有趣 其实理工男大多都很有趣 这一章介绍了 怎么样去视线一个带有 ...

  8. 【必杀】为应用程序池“XXX”提供服务的进程在与 Windows Process Activation Service 通信时出现严重错误。该进程 ID 为“XXXX”。数据字段包含错误号。

    之前写过一篇文章,https://www.cnblogs.com/qidian10/p/6028784.html 解释如何解决此类问题,但现在回过头来想一下,之前的文章还是太过浅显,无法完全有效的彻底 ...

  9. NIO-java.nio.ByteBuffer中flip、rewind、clear方法的区别

    Java NIO中的Buffer用于和NIO通道进行交互.如你所知,数据是从通道读入缓冲区,从缓冲区写入到通道中的. 缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存.这块内存被包装成NIO ...

  10. gin中jsonp的用法

    package main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := ...