[atARC083F]Collecting Balls
考虑一个构造,对于坐标$(x,y)$,连一条$x$到$y$的边(注意:横坐标和纵坐标即使权值相同也是不同的点),之后每一个连通块独立,考虑一个连通块内部:
每一个点意味着一次删除操作,每一个边意味着一个坐标,由于每一次操作最多删除一个点,因此首先点数要大于等于边数,同时总边数=总点数=$2n$,因此每一个连通块都是基环树
考虑叶子,其必然要删除一个点,只能是与其相连的边,重复此过程,对于不在环上的点或边都可以确定删除的配对关系,对于环上的点枚举两种方向也可以确定
接下来,就是要对于一组给定的配对关系,求对应的方案数,然后相加即为该连通块的方案数
再建一张新图,点仍然是操作,边是有向边,表示操作的先后顺序,考虑如何建图:
1.如果操作$x_{1}$消除了$(x,y)$,那么所有$(x,y')$(其中$y'<y$)都应在其之前被删除,即删除这些点的操作要在$(x,y)$之前,更具体的,将与$x$相连且比$y$小的点向$x$连边
2.同时,我们要保证$(x,y)$不被$y_{2}$删除,但这个的充分条件为$y_{2}$删除了$(x',y)$,而根据上述的边也满足了此条件,因此不必考虑
对于新图,统计方案数:如果存在环,那么方案数为0,否则必然是一棵内向树森林(因为每一个点至多向其父亲连边),考虑dp
令$f_{i}$表示以$i$为根的子树的方案数,由于根必须是子树中最早删除的节点,令$sz_{i}$表示$i$子树大小,$V$表示总点数,则有$ans=\frac{V!}{\prod sz_{i}}$
(可以这么看待这个式子:对于所有排列中,对于$i$其在子树内删除的名次是随机的,而只有是子树中第一个被删除才符合条件,因此是$\frac{1}{sz_{i}}$种)
假设一个连通块点数为$V_{i}$,方案数为$S_{i}$,不难得到$ans=\frac{(2n)!}{\prod V_{i}!}\prod S_{i}$,计算即可

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define mod 1000000007
5 struct ji{
6 int nex,to;
7 }edge[N<<1];
8 vector<int>v,g[N];
9 int E,n,x,y,tot,ans,head[N],vis[N],f[N],p[N],r[N],sz[N],fac[N],inv[N];
10 void add(int x,int y){
11 edge[E].nex=head[x];
12 edge[E].to=y;
13 head[x]=E++;
14 }
15 void dfs(int k,int fa){
16 f[k]=p[k]=fa;
17 vis[k]=1;
18 v.push_back(k);
19 for(int i=head[k];i!=-1;i=edge[i].nex)
20 if (edge[i].to!=fa){
21 if (!vis[edge[i].to])dfs(edge[i].to,k);
22 else{
23 tot++;
24 if (!x)x=edge[i].to;
25 else y=edge[i].to;
26 }
27 }
28 }
29 void dfs(int k){
30 if (sz[k])return;
31 sz[k]=1;
32 for(int i=0;i<g[k].size();i++){
33 dfs(g[k][i]);
34 sz[k]+=sz[g[k][i]];
35 }
36 }
37 int calc(){
38 for(int i=0;i<v.size();i++){
39 sz[v[i]]=0;
40 g[v[i]].clear();
41 }
42 for(int i=0;i<v.size();i++)
43 if (p[p[v[i]]]>v[i])g[p[v[i]]].push_back(v[i]);
44 for(int i=0;i<v.size();i++)dfs(v[i]);
45 int ans=1;
46 for(int i=0;i<v.size();i++)ans=1LL*ans*inv[sz[v[i]]]%mod;
47 return ans;
48 }
49 int main(){
50 fac[0]=inv[0]=inv[1]=1;
51 for(int i=1;i<N-4;i++)fac[i]=1LL*fac[i-1]*i%mod;
52 for(int i=2;i<N-4;i++)inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
53 scanf("%d",&n);
54 memset(head,-1,sizeof(head));
55 for(int i=1;i<=2*n;i++){
56 scanf("%d%d",&x,&y);
57 add(x,y+n);
58 add(y+n,x);
59 }
60 ans=fac[2*n];
61 for(int i=1;i<=2*n;i++)
62 if (!vis[i]){
63 v.clear();
64 x=y=tot=0;
65 dfs(i,0);
66 if (tot>2){
67 printf("0");
68 return 0;
69 }
70 for(int j=y;j!=i;j=f[j])p[f[j]]=j;
71 p[y]=x;
72 int s=calc();
73 for(int j=y;j!=x;j=f[j])p[j]=f[j];
74 p[x]=y;
75 ans=1LL*ans*(s+calc())%mod;
76 }
77 printf("%d",ans);
78 }
[atARC083F]Collecting Balls的更多相关文章
- Arc083_F Collecting Balls
传送门 题目大意 给定$N$,在$(1,0),(2,0)......(N,0)$和$(0,1),(0,2)...(0,N)$上都有$1$个机器人,同时给定$2N$个坐标$(x,y),x,y\in[1, ...
- [ARC083F] Collecting Balls [建二分图+环套树定向+建拓扑图+树的拓扑序计数]
题面 [传送门](https://arc083.contest.atcoder.jp/tasks/arc083_d) 思路 这是一道真正的好题 第一步:转化模型 行列支配类的问题,常见做法就是把行和列 ...
- 【AtCoder Beginner Contest 074 B】Collecting Balls (Easy Version)
[链接]h在这里写链接 [题意] 看懂题目之后就会发现是道大水题. [题解] 在这里写题解 [错的次数] 0 [反思] 在这了写反思 [代码] #include <bits/stdc++.h&g ...
- 题解-AtCoder ARC-083F Collecting Balls
Problem ARC083F 题意概要:给定 \(2n\) 个二维平面上的球,坐标分别为 \((x_i,y_i)\),并给出 \(n\) 个 \(A\)类 机器人 和 \(n\) 个 \(B\)类 ...
- [ARC083]Collecting Balls
Description 有一个 \(n\times n\) 的矩阵,矩阵内有 \(2n\) 个球.对于 \(i \in [1,n]\) ,\((0,i) (i,0)\) 的位置各有一个启动后往右走/往 ...
- Atcoder 乱做
最近感觉自己思维僵化,啥都不会做了-- ARC103 F Distance Sums 题意 给定第 \(i\) 个点到所有点的距离和 \(D_i\) ,要求构造一棵合法的树.满足第 \(i\) 个点到 ...
- 【AtCoder】ARC083
C - Sugar Water 计算一下可以达到水是多少,可以到达的糖是多少 枚举水,然后加最多能加的糖,是\(min(F - i *100,E * 100)\),计算密度,和前一个比较就行 #inc ...
- AtCoder刷题记录
构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...
- POJ2096 Collecting Bugs
Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 5090 Accepted: 2529 Case Time Limit: ...
随机推荐
- 从源码分析node-gyp指定node库文件下载地址
当我们安装node的C/C++原生模块时,涉及到使用node-gyp对C/C++原生模块的编译工作(configure.build).这个过程,需要nodejs的头文件以及静态库参与(后续称库文件)对 ...
- 国内首篇云厂商 Serverless 论文入选全球顶会:突发流量下,如何加速容器启动?
作者 | 王骜 来源 | Serverless 公众号 导读 USENIX ATC (USENIX Annual Technical Conference) 学术会议是计算机系统领域的顶级会议,入 ...
- PAT (Basic Level) Practice (中文)1076 Wifi密码 (15分)
1076 Wifi密码 (15分) 下面是微博上流传的一张照片:"各位亲爱的同学们,鉴于大家有时需要使用 wifi,又怕耽误亲们的学习,现将 wifi 密码设置为下列数学题答案:A-1:B- ...
- wget命令8种实用用法
大家好,我是良许. wget 是一个可以从网络上下载文件的免费实用程序,它的工作原理是从 Internet 上获取数据,并将其保存到本地文件中或显示在你的终端上. 这实际上也是大家所使用的浏览器所做的 ...
- 安装pytorch后import torch显示no module named 'torch'
问题描述:在pycharm终端里通过pip指令安装pytorch,显示成功安装但是python程序和终端都无法使用pytorch,显示no module named 'torch'. 起因:电脑里有多 ...
- MySQL:补充知识
MySQL补充知识 在学习完 MySQL 基础与提高内容后: 基础知识笔记: MySQL:基础语法-1 MySQL:基础语法-2 MySQL:基础语法-3 MySQL:基础语法-4 提高知识笔记: M ...
- 2020BUAA软工个人博客作业-软件案例分析
2020BUAA软工个人博客作业-软件案例分析 17373010 杜博玮 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业-软件案例分 ...
- netty传输java bean对象
在上一篇博客(netty入门实现简单的echo程序)中,我们知道了如何使用netty发送一个简单的消息,但是这远远是不够的.在这篇博客中,我们来使用netty发送一个java bean对象的消息,但是 ...
- STM32采集AD的输入阻抗问题
在做一款消费电子产品时,需要采集电池电压(3.3V-4.2V),同时在休眠的时候希望尽量减小待机电流.电池电压采集电路采用两个1%的300K电阻进行分压,由该电路引起的待机电路为4.2/(300+30 ...
- 攻防世界 杂项14.Erik-Baleog-and-Olaf
下载解压后用notepad++打开 发现是一个PNG的图片文件,该后缀,再用Stegsolve打开看一下, 发现一个残缺二维码,果断在线PS补全 扫码得到flag flag{#justdiffit}