考虑一个构造,对于坐标$(x,y)$,连一条$x$到$y$的边(注意:横坐标和纵坐标即使权值相同也是不同的点),之后每一个连通块独立,考虑一个连通块内部:

每一个点意味着一次删除操作,每一个边意味着一个坐标,由于每一次操作最多删除一个点,因此首先点数要大于等于边数,同时总边数=总点数=$2n$,因此每一个连通块都是基环树

考虑叶子,其必然要删除一个点,只能是与其相连的边,重复此过程,对于不在环上的点或边都可以确定删除的配对关系,对于环上的点枚举两种方向也可以确定

接下来,就是要对于一组给定的配对关系,求对应的方案数,然后相加即为该连通块的方案数

再建一张新图,点仍然是操作,边是有向边,表示操作的先后顺序,考虑如何建图:

1.如果操作$x_{1}$消除了$(x,y)$,那么所有$(x,y')$(其中$y'<y$)都应在其之前被删除,即删除这些点的操作要在$(x,y)$之前,更具体的,将与$x$相连且比$y$小的点向$x$连边

2.同时,我们要保证$(x,y)$不被$y_{2}$删除,但这个的充分条件为$y_{2}$删除了$(x',y)$,而根据上述的边也满足了此条件,因此不必考虑

对于新图,统计方案数:如果存在环,那么方案数为0,否则必然是一棵内向树森林(因为每一个点至多向其父亲连边),考虑dp

令$f_{i}$表示以$i$为根的子树的方案数,由于根必须是子树中最早删除的节点,令$sz_{i}$表示$i$子树大小,$V$表示总点数,则有$ans=\frac{V!}{\prod sz_{i}}$

(可以这么看待这个式子:对于所有排列中,对于$i$其在子树内删除的名次是随机的,而只有是子树中第一个被删除才符合条件,因此是$\frac{1}{sz_{i}}$种)

假设一个连通块点数为$V_{i}$,方案数为$S_{i}$,不难得到$ans=\frac{(2n)!}{\prod V_{i}!}\prod S_{i}$,计算即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define mod 1000000007
5 struct ji{
6 int nex,to;
7 }edge[N<<1];
8 vector<int>v,g[N];
9 int E,n,x,y,tot,ans,head[N],vis[N],f[N],p[N],r[N],sz[N],fac[N],inv[N];
10 void add(int x,int y){
11 edge[E].nex=head[x];
12 edge[E].to=y;
13 head[x]=E++;
14 }
15 void dfs(int k,int fa){
16 f[k]=p[k]=fa;
17 vis[k]=1;
18 v.push_back(k);
19 for(int i=head[k];i!=-1;i=edge[i].nex)
20 if (edge[i].to!=fa){
21 if (!vis[edge[i].to])dfs(edge[i].to,k);
22 else{
23 tot++;
24 if (!x)x=edge[i].to;
25 else y=edge[i].to;
26 }
27 }
28 }
29 void dfs(int k){
30 if (sz[k])return;
31 sz[k]=1;
32 for(int i=0;i<g[k].size();i++){
33 dfs(g[k][i]);
34 sz[k]+=sz[g[k][i]];
35 }
36 }
37 int calc(){
38 for(int i=0;i<v.size();i++){
39 sz[v[i]]=0;
40 g[v[i]].clear();
41 }
42 for(int i=0;i<v.size();i++)
43 if (p[p[v[i]]]>v[i])g[p[v[i]]].push_back(v[i]);
44 for(int i=0;i<v.size();i++)dfs(v[i]);
45 int ans=1;
46 for(int i=0;i<v.size();i++)ans=1LL*ans*inv[sz[v[i]]]%mod;
47 return ans;
48 }
49 int main(){
50 fac[0]=inv[0]=inv[1]=1;
51 for(int i=1;i<N-4;i++)fac[i]=1LL*fac[i-1]*i%mod;
52 for(int i=2;i<N-4;i++)inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
53 scanf("%d",&n);
54 memset(head,-1,sizeof(head));
55 for(int i=1;i<=2*n;i++){
56 scanf("%d%d",&x,&y);
57 add(x,y+n);
58 add(y+n,x);
59 }
60 ans=fac[2*n];
61 for(int i=1;i<=2*n;i++)
62 if (!vis[i]){
63 v.clear();
64 x=y=tot=0;
65 dfs(i,0);
66 if (tot>2){
67 printf("0");
68 return 0;
69 }
70 for(int j=y;j!=i;j=f[j])p[f[j]]=j;
71 p[y]=x;
72 int s=calc();
73 for(int j=y;j!=x;j=f[j])p[j]=f[j];
74 p[x]=y;
75 ans=1LL*ans*(s+calc())%mod;
76 }
77 printf("%d",ans);
78 }

[atARC083F]Collecting Balls的更多相关文章

  1. Arc083_F Collecting Balls

    传送门 题目大意 给定$N$,在$(1,0),(2,0)......(N,0)$和$(0,1),(0,2)...(0,N)$上都有$1$个机器人,同时给定$2N$个坐标$(x,y),x,y\in[1, ...

  2. [ARC083F] Collecting Balls [建二分图+环套树定向+建拓扑图+树的拓扑序计数]

    题面 [传送门](https://arc083.contest.atcoder.jp/tasks/arc083_d) 思路 这是一道真正的好题 第一步:转化模型 行列支配类的问题,常见做法就是把行和列 ...

  3. 【AtCoder Beginner Contest 074 B】Collecting Balls (Easy Version)

    [链接]h在这里写链接 [题意] 看懂题目之后就会发现是道大水题. [题解] 在这里写题解 [错的次数] 0 [反思] 在这了写反思 [代码] #include <bits/stdc++.h&g ...

  4. 题解-AtCoder ARC-083F Collecting Balls

    Problem ARC083F 题意概要:给定 \(2n\) 个二维平面上的球,坐标分别为 \((x_i,y_i)\),并给出 \(n\) 个 \(A\)类 机器人 和 \(n\) 个 \(B\)类 ...

  5. [ARC083]Collecting Balls

    Description 有一个 \(n\times n\) 的矩阵,矩阵内有 \(2n\) 个球.对于 \(i \in [1,n]\) ,\((0,i) (i,0)\) 的位置各有一个启动后往右走/往 ...

  6. Atcoder 乱做

    最近感觉自己思维僵化,啥都不会做了-- ARC103 F Distance Sums 题意 给定第 \(i\) 个点到所有点的距离和 \(D_i\) ,要求构造一棵合法的树.满足第 \(i\) 个点到 ...

  7. 【AtCoder】ARC083

    C - Sugar Water 计算一下可以达到水是多少,可以到达的糖是多少 枚举水,然后加最多能加的糖,是\(min(F - i *100,E * 100)\),计算密度,和前一个比较就行 #inc ...

  8. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

  9. POJ2096 Collecting Bugs

    Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 5090   Accepted: 2529 Case Time Limit: ...

随机推荐

  1. 洛谷3163 CQOI2014危桥 (最大流)

    一开始想了一发费用流做法然后直接出负环了 首先,比较显然的思路就是对于原图中没有限制的边,对应的流量就是\(inf\),如果是危桥,那么流量就应该是\(2\). 由于存在两个起始点,我们考虑直接\(s ...

  2. spoj2 prime1 (区间筛)

    给定t组询问,每组询问包括一个l和r,要求\([l,r]\)的素数有哪些 其中\(t \le 10,1 \le l \le r \le 1000000000 , r-l \le 100000\) Qw ...

  3. luogu1081 开车旅行2012 D1T3 (倍增,set,O2)

    题目描述 小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为Hi,城市 i ...

  4. JVM详解(三)——运行时数据区

    一.概述 1.介绍 类比一下:红框就好比内存的运行时数据区,在各自不同的位置放了不同的东西.而厨师就好比执行引擎. 内存是非常重要的系统资源,是硬盘和CPU的中间仓库及桥梁,承载着操作系统和应用程序的 ...

  5. 【转-Andrew_qian】stm32中断嵌套全攻略

    断断续续学习STM32一学期了,时间过的好快,现在对STM32F103系列单片机的中断嵌套及外部中断做一个总结,全当学习笔记.废话不多说,ARM公司的Cortex-m3 内核,支持256个中断,其中包 ...

  6. 编程题:X星人的金币

    X星人的金币 时问限制:3000MS 内存限制:589824KB 题目描述: X是人在一艘海底沉船上发现了很多很多很多金币.可爱的X星人决定用这些金币来玩一个填格子的游戏.其规则如下:第1个格子放2枚 ...

  7. C++编译Dlib库出现LNK2001错误(原因是在Python中安装过Dlib)

    问题 使用CMake编译Dlib库,编译得到lib文件后,新建一个VS工程想使用Dlib,却出现LNK2001:无法解析的外部符号的错误,且都与JPEG和PNG相关: 1>dlib19.17.9 ...

  8. Java:String对象小记

    Java:String对象小记 对 Java 中的 String 对象,做一个微不足道的小小小小记 字节和字符的区别 字节 byte: 一个字节包含8个位(bit),因此byte的取值范围为-128~ ...

  9. UltraSoft - Alpha - Scrum Meeting 2

    Date: Apr 09th, 2020. 会议内容为完成初步的任务分工. Scrum 情况汇报 进度情况 组员 负责 昨日进度 后两日任务 CookieLau PM.后端 继续Django tuto ...

  10. 对mongo文档的增删改操作

    在mongo db 中增加.删除.修改文档有好多方法,这里简单记录一下我所知道的一些方法. 前置条件: 1.创建study数据库  use study; 2.创建persons集合,当第一次向pers ...