今天准备再更新一篇博客,加油呀~~~

系列博客链接:

(一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html

(二)目标检测算法之R-CNN https://www.cnblogs.com/kongweisi/p/10895055.html

本篇博客概述:

1、SPPNet的特点

  1.1、映射(减少卷积计算、防止图片内容变形

     1.2、spp层:空间金字塔层(将大小不同的图片转换成固定大小的图片) 

2、SPPNet总结

  完整结构+优缺点总结

引言:

前面介绍的R-CNN的速度慢在哪里?

答:每个候选区都要进行卷积操作提取特征。因此,SPPnet孕育而生。

1、 SPPNet

SPPNet提出了SPP层,主要改进了以下两个方面:

  • 减少卷积计算
  • 防止图片内容变形

                    图1 R-CNN与SPPNet

图1中第一行代表R-CNN的检测过程,第二行是SPPNet的。输入进R-CNN卷积层的图像必须固定大小,因此要进过crop/warp,这会使原图片变形。

而SPPNet直接将原图片输入CNN中,获其特征,使得原图片内容得以保真。

R-CNN模型 SPPNet模型
1、R-CNN是让每个候选区域经过crop/wrap等操作变换成固定大小的图像 2、固定大小的图像塞给CNN 传给后面的层做训练回归分类操作 1、SPPNet把全图塞给CNN得到全图的feature map 2、让候选区域与feature map直接映射,得到候选区域的映射特征向量 3、映射过来的特征向量大小不固定,这些特征向量塞给SPP层(空间金字塔变换层),SPP层接收任何大小的输入,输出固定大小的特征向量,再塞给FC层

1.1 映射

原始图片经过CNN变成了feature map,原始图片通过选择性搜索(SS)得到了候选区域,现在需要将基于原始图片的候选区域映射到feature map中的特征向量。

映射过程图参考如下:

整个映射过程有具体的公式,如下

假设(x′,y′)(x′,y′)表示特征图上的坐标点,坐标点(x,y)表示原输入图片上的点,那么它们之间有如下转换关系,这种映射关系与网络结构有关:(x,y)=(S∗x′,S∗y′),即

  • 左上角的点:

    • x′=[x/S]+1
  • 右下角的点:

    • x′=[x/S]−1

其中 SS 就是CNN中所有的strides的乘积,包含了池化、卷积的stride。论文中使用S的计算出来为=16

原论文链接,其中有公式的推导过程 http://kaiminghe.com/iccv15tutorial/iccv2015_tutorial_convolutional_feature_maps_kaiminghe.pdf

1.2 spatial pyramid pooling (空间金字塔变换层

通过spatial pyramid pooling 将任意大小的特征图转换成固定大小的特征向量

示例:假设原图输入是224x224,对于conv出来后的输出是13x13x256的,可以理解成有256个这样的Filter,每个Filter对应一张13x13的feature map。

接着在这个特征图中找到每一个候选区域映射的区域,spp层会将每一个候选区域分成1x1,2x2,4x4三张子图,对每个子图的每个区域作max pooling,

得出的特征再连接到一起,就是(16+4+1)x256的特征向量,接着给全连接层做进一步处理,如下图:

2、 SPPNet总结

来看下SPPNet的完整结构

  • 优点

    • SPPNet在R-CNN的基础上提出了改进,通过候选区域和feature map的映射,配合SPP层的使用,从而达到了CNN层的共享计算,减少了运算时间, 后面的Fast R-CNN等也是受SPPNet的启发
  • 缺点
    • 训练依然过慢、效率低,特征需要写入磁盘(因为SVM的存在)
    • 分阶段训练网络:选取候选区域、训练CNN、训练SVM、训练bbox回归器, SPP-Net在fine-tuning阶段无法使用反向传播微调SPP-Net前面的Conv层

(三)目标检测算法之SPPNet的更多相关文章

  1. 目标检测算法(2)SPP-net

    本文是使用深度学习进行目标检测系列的第二篇,主要介绍SPP-net:Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual R ...

  2. (六)目标检测算法之YOLO

    系列文章链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  3. (五)目标检测算法之Faster R-CNN

    系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  4. (四)目标检测算法之Fast R-CNN

    系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  5. (七)目标检测算法之SSD

    系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  6. 深度学习笔记之目标检测算法系列(包括RCNN、Fast RCNN、Faster RCNN和SSD)

    不多说,直接上干货! 本文一系列目标检测算法:RCNN, Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码. •   RCNN RCN ...

  7. 目标检测算法的总结(R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD、FNP、ALEXnet、RetianNet、VGG Net-16)

    目标检测解决的是计算机视觉任务的基本问题:即What objects are where?图像中有什么目标,在哪里?这意味着,我们不仅要用算法判断图片中是不是要检测的目标, 还要在图片中标记出它的位置 ...

  8. 基于模糊Choquet积分的目标检测算法

    本文根据论文:Fuzzy Integral for Moving Object Detection-FUZZ-IEEE_2008的内容及自己的理解而成,如果想了解更多细节,请参考原文.在背景建模中,我 ...

  9. 目标检测算法YOLO算法介绍

    YOLO算法(You Only Look Once) 比如你输入图像是100x100,然后在图像上放一个网络,为了方便讲述,此处使用3x3网格,实际实现时会用更精细的网格(如19x19).基本思想是, ...

随机推荐

  1. MySQL数据库索引介绍

    一.什么是索引 索引是mysql数据库中的一种数据结构,就是一种数据的组织方式,这种数据结构又称为key 表中的一行行数据按照索引规定的结构组织成了一种树型结构,该树叫B+树 二.为何要用索引 优化查 ...

  2. 文本图Tranformer在文本分类中的应用

    原创作者 | 苏菲 论文来源: https://aclanthology.org/2020.emnlp-main.668/ 论文题目: Text Graph Transformer for Docum ...

  3. ApacheCN C/C++ 译文集(二) 20211204 更新

    编写高效程序的艺术 零.序言 第一部分:性能基础 一.性能和并发性介绍 二.性能测量 三.CPU 架构.资源和性能 四.内存架构和性能 五.线程.内存和并发 第二部分:高级并发 六.并发和性能 七.并 ...

  4. Matplotlib 绘图秘籍·翻译完成

    原文:Matplotlib Plotting Cookbook 协议:CC BY-NC-SA 4.0 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远. 在线阅读 ApacheCN ...

  5. shell下快捷键

    ### 1.快捷键 ^C   终止前台运行的程序 ^D   退出 等价于exit ^L   清屏 ^A   光标移动到命令行的最前端 ^E   光标移动到命令行的最后端 ^U   删除光标前所有字符 ...

  6. bash_profile和bashsrc的区别

    感谢大佬:http://unclealan.cn/index.php/system/128.html 描述 在类Linux或者MACOS系统中,家目录(用户目录)中我们会看到,.bash_profil ...

  7. js中(function(){}()),(function(){})(),$(function(){});之间的区别

    1. (function(){}())与(function(){})() 这两种写法,都是一种立即执行函数的写法,即IIFE (Immediately Invoked Function Express ...

  8. TestNG--@Factory

    原文地址:http://blog.csdn.net/wanghantong TestNg的@Factory注解从字面意思上来讲就是采用工厂的方法来创建测试数据并配合完成测试 其主要应对的场景是:对于某 ...

  9. Linux命令安装Mysql

    关键步骤: 4.创建用户组和用户 groupadd mysql useradd -r -g mysql mysql 5.修改权限 chown -R mysql:mysql ./ 6.安装数据库 ./s ...

  10. https校验问题

    一般会报SSL问题:解决办法参考 http://blog.csdn.net/a506681571/article/details/78284589 # 设置未经允许验证的SSL方法,只需运行一次便可 ...