PyTorch 神经网络
PyTorch 神经网络
神经网络
神经网络可以通过 torch.nn 包来构建。
现在对于自动梯度(autograd)有一些了解,神经网络是基于自动梯度 (autograd)来定义一些模型。一个 nn.Module 包括层和一个方法 forward(input) 它会返回输出(output)。
例如,看一下数字图片识别的网络:
这是一个简单的前馈神经网络,它接收输入,让输入一个接着一个的通过一些层,最后给出输出。
一个典型的神经网络训练过程包括以下几点:
1.定义一个包含可训练参数的神经网络
2.迭代整个输入
3.通过神经网络处理输入
4.计算损失(loss)
5.反向传播梯度到神经网络的参数
6.更新网络的参数,典型的用一个简单的更新方法:weight = weight - learning_rate *gradient
定义神经网络
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
输出:
Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
刚定义了一个前馈函数,然后反向传播函数被自动通过 autograd 定义了。可以使用任何张量操作在前馈函数上。
一个模型可训练的参数可以通过调用 net.parameters() 返回:
params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1's .weight
输出:
10
torch.Size([6, 1, 5, 5])
尝试随机生成一个 32x32 的输入。注意:期望的输入维度是 32x32 。为了使用这个网络在 MNIST 数据及上,需要把数据集中的图片维度修改为 32x32。
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
输出:
tensor([[-0.0233, 0.0159, -0.0249, 0.1413, 0.0663, 0.0297, -0.0940, -0.0135,
0.1003, -0.0559]], grad_fn=<AddmmBackward>)
把所有参数梯度缓存器置零,用随机的梯度来反向传播
net.zero_grad()
out.backward(torch.randn(1, 10))
在继续之前,让复习一下所有见过的类。
torch.Tensor - A multi-dimensional array with support for autograd operations like backward(). Also holds the gradient w.r.t. the tensor.
nn.Module - Neural network module. Convenient way of encapsulating parameters, with helpers for moving them to GPU, exporting, loading, etc.
nn.Parameter - A kind of Tensor, that is automatically registered as a parameter when assigned as an attribute to a Module.
autograd.Function - Implements forward and backward definitions of an autograd operation. Every Tensor operation, creates at least a single Function node, that connects to functions that created a Tensor and encodes its history.
在此,完成了:
1.定义一个神经网络
2.处理输入以及调用反向传播
还剩下:
1.计算损失值
2.更新网络中的权重
损失函数
一个损失函数需要一对输入:模型输出和目标,然后计算一个值来评估输出距离目标有多远。
有一些不同的损失函数在 nn 包中。一个简单的损失函数就是 nn.MSELoss ,这计算了均方误差。
例如:
output = net(input)
target = torch.randn(10) # a dummy target, for example
target = target.view(1, -1) # make it the same shape as output
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
输出:
tensor(1.3389, grad_fn=<MseLossBackward>)
现在,如果跟随损失到反向传播路径,可以使用它的 .grad_fn 属性,将会看到一个这样的计算图:
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
-> view -> linear -> relu -> linear -> relu -> linear
-> MSELoss
-> loss
所以,当调用 loss.backward(),整个图都会微分,而且所有的在图中的requires_grad=True 的张量将会让他们的 grad 张量累计梯度。
为了演示,将跟随以下步骤来反向传播。
print(loss.grad_fn) # MSELoss
print(loss.grad_fn.next_functions[0][0]) # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU
输出:
<MseLossBackward object at 0x7fab77615278>
<AddmmBackward object at 0x7fab77615940>
<AccumulateGrad object at 0x7fab77615940>
反向传播
为了实现反向传播损失,所有需要做的事情仅仅是使用 loss.backward()。需要清空现存的梯度,要不然帝都将会和现存的梯度累计到一起。
现在调用 loss.backward() ,然后看一下 con1 的偏置项在反向传播之前和之后的变化。
net.zero_grad() # zeroes the gradient buffers of all parameters
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
loss.backward()
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
输出:
conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([-0.0054, 0.0011, 0.0012, 0.0148, -0.0186, 0.0087])
现在看到了,如何使用损失函数。
唯一剩下的事情就是更新神经网络的参数。
更新神经网络参数:
最简单的更新规则就是随机梯度下降。
weight = weight - learning_rate * gradient
可以使用 python 来实现这个规则:
learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)
尽管如此,如果是用神经网络,使用不同的更新规则,类似于 SGD, Nesterov-SGD, Adam, RMSProp, 等。为了让这可行,建立了一个小包:torch.optim 实现了所有的方法。使用非常的简单。
import torch.optim as optim
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update
PyTorch 神经网络的更多相关文章
- 使用Google-Colab训练PyTorch神经网络
Colaboratory 是免费的 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行.关键是还有免费的GPU可以使用!用Colab训练PyTorch神经网络步骤如下: 1: ...
- 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...
- pytorch神经网络解决回归问题(非常易懂)
对于pytorch的深度学习框架,在建立人工神经网络时整体的步骤主要有以下四步: 1.载入原始数据 2.构建具体神经网络 3.进行数据的训练 4.数据测试和验证 pytorch神经网络的数据载入,以M ...
- PyTorch神经网络集成技术
PyTorch神经网络集成技术 create_python_neuropod 将任意python代码打包为一个neurood包. create_python_neuropod( neuropod_pa ...
- Tensor:Pytorch神经网络界的Numpy
摘要:Tensor,它可以是0维.一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便. 本文分享自华为云社区<Tensor:P ...
- 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上
总结一下相关概念: torch.Tensor - 一个近似多维数组的数据结构 autograd.Variable - 改变Tensor并且记录下来操作的历史记录.和Tensor拥有相同的API,以及b ...
- pytorch神经网络实现的基本步骤
转载自:https://blog.csdn.net/dss_dssssd/article/details/83892824 版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载 ...
- PyTorch学习笔记6--案例2:PyTorch神经网络(MNIST CNN)
上一节中,我们使用autograd的包来定义模型并求导.本节中,我们将使用torch.nn包来构建神经网络. 一个nn.Module包含各个层和一个forward(input)方法,该方法返回outp ...
- 1.数据结构《Pytorch神经网络高效入门教程》Deeplizard
当移动一个数组或向量时,我们需要一个索引:二维数组/矩阵需要两个索引, 比如说标量是零维张量,数组/向量/矢量是一维张量,矩阵是是二维张量,n维数组是n维张量. 如果我们被告知, 假设有一个张量t, ...
随机推荐
- 【Scrapy(四)】scrapy 分页爬取以及xapth使用小技巧
scrapy 分页爬取以及xapth使用小技巧 这里以爬取www.javaquan.com为例: 1.构建出下一页的url: 很显然通过dom树,可以发现下一页所在的a标签 2.使用scrapy的 ...
- AliCrackme_2题的分析
作者:Fly2015 AliCrackme_2.apk运行起来的注册界面,如图. 首先使用Android反编译利器Jeb对AliCrackme_2.apk的Java层代码进行分析. 很幸运,就找到了该 ...
- DVWA之SQL Injection
SQL Injection SQL Injection,即SQL注入,是指攻击者通过注入恶意的SQL命令,破坏SQL查询语句的结构,从而达到执行恶意SQL语句的目的.SQL注入漏洞的危害是巨大的,常常 ...
- Ext.MessageBox.alert()弹出对话框详解
Ext.MessageBox是一个工具类,他继承自Obiect对象,用来生成各种风格的信息提示对话框,Ext.Msg是该类的别名,使用Ext.MessageBox和用Ext.Msg效果是一样的,而后者 ...
- 【JavaScript】Leetcode每日一题-青蛙过河
[JavaScript]Leetcode每日一题-青蛙过河 [题目描述] 一只青蛙想要过河. 假定河流被等分为若干个单元格,并且在每一个单元格内都有可能放有一块石子(也有可能没有). 青蛙可以跳上石子 ...
- 【微信小程序】--bindtap参数传递,配合wx.previewImage实现多张缩略图预览
本文为原创随笔,纯属个人理解.如有错误,欢迎指出. 如需转载请注明出处 在微信小程序中预览图片分为 a.预览本地相册中的图片. b.预览某个wxml中的多张图片. 分析:实质其实是一样的.都是给wx. ...
- GitBash管理代码
一.Git是什么? Git是目前世界上最先进的分布式版本控制系统. 1.Git和SVN的区别 SVN是集中式版本控制系统,版本库是集中放在中央服务器的,而干活的时候,用的都是自己的电脑,所以首先要从中 ...
- web自动化框架—BasePage 类的简单封装
优秀的框架都有属于自己的思想,在搭建web自动化测试框架时,我们通常都遵循 PO(Page Object)思想. 简单理解就是我们会把每个页面看成一个对象,一切皆对象,面向对象编码,这样会让我们更好的 ...
- 关于Aborted connection告警日志的分析
前言: 有时候,连接MySQL的会话经常会异常退出,错误日志里会看到"Got an error reading communication packets"类型的告警.本篇文章我们 ...
- [MySQL数据库之Navicat.pymysql模块、视图、触发器、存储过程、函数、流程控制]
[MySQL数据库之Navicat.pymysql模块.视图.触发器.存储过程.函数.流程控制] Navicat Navicat是一套快速.可靠并价格相当便宜的数据库管理工具,专为简化数据库的管理及降 ...