NOIP 模拟 $30\; \rm 毛三琛$
题解 \(by\;zj\varphi\)
二分答案,考虑二分背包中的最大值是多少。
枚举 \(p\) 的值,在当前最优答案不优时,直接跳掉。
随机化一下 \(p\),这样复杂度会有保证。
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x=f?x:-x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
static const int N=1e4+7;
int a[N],tmp[N],p[N],ans,n,P,k;
inline int check(int mid) {
ri cnt(0),nw(0);
for (ri i(1);i<=n;p(i)) {
if (tmp[i]>mid) return 0;
if (nw+tmp[i]>mid) p(cnt),nw=0;
nw+=tmp[i];
}
return cnt<k;
}
inline int MD(int x) {return x>=P?x-P:x;}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
srand(time(0)*clock()^time(0)*clock());
cin >> n >> P >> k;
for (ri i(1);i<=n;p(i)) cin >> a[i];
for (ri i(1);i<=P;p(i)) p[i]=i-1;
std::random_shuffle(p+1,p+P+1);
ans=10000*n;
for (ri i(1);i<=P;p(i)) {
ri cp=p[i];
for (ri j(1);j<=n;p(j)) tmp[j]=MD(a[j]+cp);
if (!check(ans)) continue;
ri l(0),r(ans),res;
while(l<=r) {
int mid(l+r>>1);
if (check(mid)) r=mid-1,res=mid;
else l=mid+1;
}
ans=res;
}
printf("%d\n",ans);
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $30\; \rm 毛三琛$的更多相关文章
- NOIP 模拟 $30\; \rm 毛二琛$
题解 \(by\;zj\varphi\) 原题问的就是对于一个序列,其中有的数之间有大小关系限制,问有多少种方案. 设 \(dp_{i,j}\) 表示在前 \(i\) 个数中,第 \(i\) 个的排名 ...
- NOIP 模拟 $30\; \rm 毛一琛$
题解 \(by\;zj\varphi\) 如何判断一个集合可以被拆成两个相等的部分? 枚举两个集合,如果它们的和相等,那么他们的并集就是合法的,复杂度 \(\mathcal O\rm(3^n)\) \ ...
- noip模拟30[毛毛毛探探探]
\(noip模拟30\;solutions\) 所以说,这次被初中的大神给爆了????? 其实真的不甘心,这次考场上的遗憾太多,浪费的时间过多,心情非常不好 用这篇题解来结束这场让人伤心的考试吧 \( ...
- NOIP 2008提高组第三题题解by rLq
啊啊啊啊啊啊今天已经星期三了吗 那么,来一波题解吧 本题地址http://www.luogu.org/problem/show?pid=1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们 ...
- 最优贸易 NOIP 2009 提高组 第三题
题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...
- Noip模拟30 2021.8.4
T1 毛一琛 考场上打的稳定的$O((2^n)^2)$的暴力.其实再回忆一下上次那道用二进制枚举的题$y$ 就可以知道一样的道理,使用$\textit{Meet In the Middle}$, 按照 ...
- 2021.8.4考试总结[NOIP模拟30]
T1 毛衣衬 将合法子集分为两个和相等的集合. 暴力枚举每个元素是否被选,放在哪种集合,复杂度$O(3^n)$.考虑$\textit{meet in the middle}$. 将全集等分分为两部分分 ...
- 「10.13」毛一琛(meet in the middle)·毛二琛(DP)·毛三琛(二分+随机化???)
A. 毛一琛 考虑到直接枚举的话时间复杂度很高,我们运用$meet\ in\ the\ middle$的思想 一般这种思想看似主要用在搜索这类算法中 发现直接枚举时间复杂度过高考虑枚举一半另一半通过其 ...
- noip模拟30
\(\color{white}{\mathbb{缀以无尽之群星点点,饰以常青之巨木郁郁,可细斟木纹叶脉,独无可极苍穹之览,名之以:密林}}\) 看完题后感觉整套题都没什么思路,而且基本上整场考试确实是 ...
随机推荐
- bugKu管理员系统
先F12看看,有啥发现的,发现一段注释... 感谢那个群友分享了怎么辨别base64编码,通常是A-Z,a-z,0-9,+,/,=.最后通常有0个到2个等号,我也成功用在线解码器,确实是base64编 ...
- ArcnLinux安装基础配置(二)
本文为对此ArchLinux安装使用教程网站中部分内容的总结和扩展补充,想看更详细的内容可以去此网站. 添加一个用户 useradd -m -G wheel -s /bin/bash cirry 设置 ...
- 「CF555E」 Case of Computer Network
「CF555E」 Case of Computer Network 传送门 又是给边定向的题目(马上想到欧拉回路) 然而这个题没有对度数的限制,你想歪了. 然后又开始想一个类似于匈牙利的算法:我先跑, ...
- MySQL字符串操作函数
使用方法:concat(str1,str2,-) 返回结果为连接参数产生的字符串.如有任何一个参数为NULL ,则返回值为 NULL. mysql> select concat('11',' ...
- Linux常用命令 day day up系列2
一.alias--设置别名二.du--统计目录及文件空间占用情况三.mkdir--创建新目录四.touch--创建空文件五.ln--创建链接文件1.链接文件类型六.cp--复制文件或目录七.rm--删 ...
- 手把手教你在Modelarts平台上进行视频推理
摘要:为了方便小伙伴们进行视频场景的AI应用开发,Modelarts推理平台将视频推理场景中一些通用的流程抽取出来预置在基础镜像中,小伙伴们只需要简单地编写预处理及后处理脚本,便可以像开发图片类型的A ...
- Unittest方法 -- 测试报告&加载测试类(discover)
import unittestimport HTMLTestRunnerimport osclass F11(unittest.TestCase): def test_001(self): self. ...
- vue组件之间通信总结(超详细)
组件通信在我们平时开发过程中,特别是在vue和在react中,有着举足轻重的地位.本篇将总结在vue中,组件之间通信的几种方式: props.$emit $parent.$children $attr ...
- informix常见问题
1.中文乱码 https://www.cnblogs.com/equation/p/5545967.html 2.informix创建数据库和用户 https://wenku.baidu.com/vi ...
- Java代码中,如何监控Mysql的binlog?
最近在工作中,遇到了这样一个业务场景,我们需要关注一个业务系统数据库中某几张表的数据,当数据发生新增或修改时,将它同步到另一个业务系统数据库中的表中. 一提到数据库的同步,估计大家第一时间想到的就是基 ...