noip38
T1
有个朴素的暴力,枚举每一个子矩形,复杂度 \(O(n^{2}m^{2})\),观察数据范围,n很小,考虑枚举行,对于 \(m\) 用 \(two\;pointers\) 来维护。
先预处理出每一列的前缀和,然后枚举行,对于列,用个双指针,把 \([l,r]\) 这一段区间卡出来,答案每回累加合法的区间长度即可。
复杂度 \(O(n^{2}m)\)
Code
#include<cmath>
#include<cstdio>
#define MAX 50100
#define re register
#define int long long
namespace OMA
{
char ch[MAX];
int n,m,l,r,tot[MAX];
int ans,sum[33][MAX];
struct stream
{
template<typename type>inline stream &operator >>(type &s)
{
int w=1; s=0; char ch=getchar();
while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
return s*=w,*this;
}
}cin;
signed main()
{
//freopen("node.in","r",stdin);
cin >> n >> m;
for(re int i=1; i<=n; i++)
{
scanf("%s",ch+1);
for(re int j=1; j<=m; j++)
{ sum[i][j] = sum[i-1][j]+(ch[j]=='1'); }
}
cin >> l >> r;
for(re int i=1; i<=n; i++)
{
for(re int j=i; j<=n; j++)
{
int lp = 0,rp = 0;
for(re int k=1; k<=m; k++)
{
//printf("i=%lld j=%lld k=%lld ",i,j,k);
tot[k] = tot[k-1]+sum[j][k]-sum[i-1][k];
//printf("tot[%lld]=%lld\n",k,tot[k]);
while(tot[k]-tot[lp]>r&&lp+1<k)
{ lp++; }
while(tot[k]-tot[rp+1]>=l&&rp+1<k)
{ rp++; }
if(tot[k]-tot[rp]>=l)
{ ans += rp-lp+1; }
}
}
}
printf("%lld\n",ans);
return 0;
}
}
signed main()
{ return (OMA::main(),0); }
T2
题意转换

好了,现在你已经知道转换后的题意,问题在于如何求解 \(cnt\) 数组和答案。
对于每一行,我们都开一个桶记录 \(a\) 出现的次数。
然后枚举每一行,再从1枚举到最大值,再枚举当前枚举的数的倍数,加上上边说的桶即可 建议看code
这样得到的 \(cnt_{i,j}\) 表示第i行有多少个数为j的倍数,每一行求和就是总的,而我们要的是j,所以考虑一波容斥,即减去j的其他倍数即可,这样的话就要倒序枚举最大值。
复杂度 \(O(n(m+\max\{a\}\ln\max\{a\}))\) 。
Code
#include<cstdio>
#define MAX 100010
#define re register
#define int long long
const int N = 22;
namespace OMA
{
int n,m,xam,ans;
int a[N][MAX];
int buc[N][MAX];
int cnt[N][MAX],sum[MAX];
const int p = 1e9+7;
struct stream
{
template<typename type>inline stream &operator >> (type &s)
{
int w=1; s=0; char ch=getchar();
while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
return s*=w,*this;
}
}cin;
inline int max(int a,int b)
{ return a>b?a:b; }
signed main()
{
cin >> n >> m;
for(re int i=1; i<=n; i++)
{
for(re int j=1; j<=m; j++)
{ cin >> a[i][j]; xam = max(xam,a[i][j]); buc[i][a[i][j]]++; }
}
for(re int i=1; i<=n; i++)
{
for(re int j=1; j<=xam; j++)
{
for(re int k=1; j*k<=xam; k++)
{ cnt[i][j] += buc[i][j*k]; }
}
}
/*for(re int i=1; i<=n; i++)
{
for(re int j=1; j<=xam; j++)
{ printf("%lld ",cnt[i][j]); }
printf("\n");
}*/
for(re int j=xam; j; j--)
{
sum[j] = 1;
for(re int i=1; i<=n; i++)
{ (sum[j] *= cnt[i][j]+1) %= p; }
sum[j] -= 1;
if(!sum[j])
{ continue ; }
for(re int k=2; k*j<=xam; k++)
{ sum[j] -= sum[k*j]; }
(ans += j*sum[j]) %= p;
}
printf("%lld\n",(ans+p)%p);
return 0;
}
}
signed main()
{ return OMA::main(); }
T3
点分治,不会,爬了
noip38的更多相关文章
随机推荐
- XCTF simple-unpacked
一.查壳 是UPX的壳,拖入IDA,发现很多函数无法反编译也无法查看 二.骚操作 将那个文件放入记事本,ctrl+F搜索flag. 找到了. 实际上,是需要专门的UPX脱壳工具或者手工来脱壳的,我目前 ...
- Linux下使用Ansible处理批量操作
Ansible介绍: ansible是一款为类unix系统开发的自由开源的配置和自动化工具.它用python写成,类似于saltstack和puppet,但是不同点是ansible不需要再节点中安装任 ...
- jenkins报错: error: insufficient permission for adding an object to repository database .git/objects
前言:这是在用jenkins去gitlab上面去拉下代码来编译,就报了这个错,在这里记录下,避免下次 报错: 17:08:17 error: insufficient permission for ...
- js定时器中引用的外部函数如何传递参数
问题:比如在一个点击事件中我需要将点击事件参数event传入到定时器中,如果只是单纯的在setTimeout(timer(e),1000)中写上括弧e,则该定时器不会等到1s才执行,而是会立即执行.那 ...
- c语言:putchar
函数:1.C语言是一门函数语言,由多个函数组成,至少有一个主函数.2.主函数的写法:下面四种写法都正确 main() main(void) int main() int main(void):int表 ...
- 高校表白App-团队冲刺第十天
今天要做什么 做一个类似于淘宝的小云播报 做了什么 没有完全实现,轮转实现,功能没有 遇到的问题 遇到的问题好多啊,感觉写一天都写不完,我还是好好学习一下再重新写吧
- [刘阳Java]_eayui-searchbox搜索组件_第6讲
EasyUI中搜索框也是常用的基本组件,可以用到条件搜索中 <!DOCTYPE html> <html> <head> <meta charset=" ...
- vite插件-自动生成vue组件文档
特点 支持热更新 快速启动,依赖于 vite,无需另起服务 自动生成组件导航 ui 采用了vant-ui的样式 核心方法覆盖率达到了 92.86% 使用 yarn add vite-plugin-vu ...
- 【动画消消乐】HTML+CSS 自定义加载动画:清新折叠方块效果 063(附源码及原理详解)
前言 Hello!小伙伴! 非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出- 自我介绍ଘ(੭ˊᵕˋ)੭ 昵称:海轰 标签:程序猿|C++选手|学生 简介:因C语言结识编程,随后转入计算机专 ...
- Scala学习——隐式转换
scala隐式转换 一.需求:为一个类添加一个新的方法 java:动态代理 scala:隐式转换 隐式转换例子: 1.man to superMan package top.ruandb.scala. ...