T1

有个朴素的暴力,枚举每一个子矩形,复杂度 \(O(n^{2}m^{2})\),观察数据范围,n很小,考虑枚举行,对于 \(m\) 用 \(two\;pointers\) 来维护。

先预处理出每一列的前缀和,然后枚举行,对于列,用个双指针,把 \([l,r]\) 这一段区间卡出来,答案每回累加合法的区间长度即可。

复杂度 \(O(n^{2}m)\)

Code
#include<cmath>
#include<cstdio>
#define MAX 50100
#define re register
#define int long long
namespace OMA
{
char ch[MAX];
int n,m,l,r,tot[MAX];
int ans,sum[33][MAX];
struct stream
{
template<typename type>inline stream &operator >>(type &s)
{
int w=1; s=0; char ch=getchar();
while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
return s*=w,*this;
}
}cin;
signed main()
{
//freopen("node.in","r",stdin);
cin >> n >> m;
for(re int i=1; i<=n; i++)
{
scanf("%s",ch+1);
for(re int j=1; j<=m; j++)
{ sum[i][j] = sum[i-1][j]+(ch[j]=='1'); }
}
cin >> l >> r;
for(re int i=1; i<=n; i++)
{
for(re int j=i; j<=n; j++)
{
int lp = 0,rp = 0;
for(re int k=1; k<=m; k++)
{
//printf("i=%lld j=%lld k=%lld ",i,j,k);
tot[k] = tot[k-1]+sum[j][k]-sum[i-1][k];
//printf("tot[%lld]=%lld\n",k,tot[k]);
while(tot[k]-tot[lp]>r&&lp+1<k)
{ lp++; }
while(tot[k]-tot[rp+1]>=l&&rp+1<k)
{ rp++; }
if(tot[k]-tot[rp]>=l)
{ ans += rp-lp+1; }
}
}
}
printf("%lld\n",ans);
return 0;
}
}
signed main()
{ return (OMA::main(),0); }

T2

题意转换

好了,现在你已经知道转换后的题意,问题在于如何求解 \(cnt\) 数组和答案。

对于每一行,我们都开一个桶记录 \(a\) 出现的次数。

然后枚举每一行,再从1枚举到最大值,再枚举当前枚举的数的倍数,加上上边说的桶即可 建议看code

这样得到的 \(cnt_{i,j}\) 表示第i行有多少个数为j的倍数,每一行求和就是总的,而我们要的是j,所以考虑一波容斥,即减去j的其他倍数即可,这样的话就要倒序枚举最大值。

复杂度 \(O(n(m+\max\{a\}\ln\max\{a\}))\) 。

Code
#include<cstdio>
#define MAX 100010
#define re register
#define int long long
const int N = 22;
namespace OMA
{
int n,m,xam,ans;
int a[N][MAX];
int buc[N][MAX];
int cnt[N][MAX],sum[MAX];
const int p = 1e9+7;
struct stream
{
template<typename type>inline stream &operator >> (type &s)
{
int w=1; s=0; char ch=getchar();
while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
return s*=w,*this;
}
}cin;
inline int max(int a,int b)
{ return a>b?a:b; }
signed main()
{
cin >> n >> m;
for(re int i=1; i<=n; i++)
{
for(re int j=1; j<=m; j++)
{ cin >> a[i][j]; xam = max(xam,a[i][j]); buc[i][a[i][j]]++; }
}
for(re int i=1; i<=n; i++)
{
for(re int j=1; j<=xam; j++)
{
for(re int k=1; j*k<=xam; k++)
{ cnt[i][j] += buc[i][j*k]; }
}
}
/*for(re int i=1; i<=n; i++)
{
for(re int j=1; j<=xam; j++)
{ printf("%lld ",cnt[i][j]); }
printf("\n");
}*/
for(re int j=xam; j; j--)
{
sum[j] = 1;
for(re int i=1; i<=n; i++)
{ (sum[j] *= cnt[i][j]+1) %= p; }
sum[j] -= 1;
if(!sum[j])
{ continue ; }
for(re int k=2; k*j<=xam; k++)
{ sum[j] -= sum[k*j]; }
(ans += j*sum[j]) %= p;
}
printf("%lld\n",(ans+p)%p);
return 0;
}
}
signed main()
{ return OMA::main(); }

T3

点分治,不会,爬了

noip38的更多相关文章

随机推荐

  1. Doris开发手记3:利用CoreDump文件快速定位Doris的查询问题

    Apache Doris的BE部分是由C++编写,当出现一些内存越界,非法访问的问题时会导致BE进程的Crash.这部分的问题常常较难排查,同时也很难快速定位到对应的触发SQL,给使用者带来较大的困扰 ...

  2. 使用 VSCode 搭建 Flutter环境

    概述 编辑器使用 vscode,不再安装 Android Studio. 安装 Git 点击这里 下载并安装 Git 配置 Java 环境 下载和安装 JDK 点击下载 Java SE Develop ...

  3. 2021 MySQL安装教程(最新教程)- 含网盘下载

    大家好,我是 我玩亚索我会C.最近电脑重装系统了,然后就想着装个MySQL,由于很久没装过了,于是上网搜索了教程,但是发现现在MySQL安装和之前的不一样了,网上都是旧版的安装教程,所以我就做一篇新版 ...

  4. selenium3 + python - js&jquery操作处理

    # 推荐学习:https://www.w3school.com.cn/js/index.asp## 下面以简书登录&注册定位元素为例"""js定位 id name ...

  5. Spring常见问题(五)

    1.静态资源访问配置 绝对路径:访问静态资源. <mvc:resources location="/js/" mapping="/js/**">&l ...

  6. redis的过期删除策略

    一.redis的三种过期策略 1.定时删除在设置key的过期时间的同时,为该key创建一个定时器,让定时器在key的过期时间来临时,对key进行删除优点:保证内存被尽快释放缺点:1)若过期key很多, ...

  7. GraphPad Prism 9.0安装破解教程

    graphpad prism 9.0是一款强大的科学软件,拥有大量分析图表,prism是回归分析的著名软件之一,非常适用于科研生物医学等领域.本文提供其破解版,激活码,序列号,破解教程等,可以完美激活 ...

  8. centos 服务

    1,开机开启服务 #  chkconfig vsftpd on

  9. 在vue中使用微信jssdk的getLocalImgData怎么让多张图片显示

    在循环里添加了一个异步请求类型的,所以我让他每次执行完毕后再执行下一次操作,其中用到了async 和 await,将异步变为同步去执行. 1 // 图片上传 2 handleImage(typeVal ...

  10. 解决 Flask 项目无法用 .env 文件中解析的参数设置环境变量的错误

    在 Windows 上启动 Flask 项目时,工作目录有 UTF-8 编码的 .env 文件,里面配置的环境变量在 Python2 中识别为 Unicode 类型,导致下述错误: * Serving ...