高效Tensor张量生成
高效Tensor张量生成
Efficient Tensor Creation
从C++中的Excel数据中创建Tensor张量的方法有很多种,在简单性和性能之间都有不同的折衷。本文讨论了一些方法及其权衡。
提示
继续阅读之前请务必阅读C++指南
将数据直接写入Tensor张量
如果能做到这一点就更好了。
不要复制数据或包装现有数据,而是直接将数据写入Tensor张量。
正向
对于进程内和进程外的执行,这将在没有副本的情况下工作
没有内存对齐要求
不需要使用删除程序
反向
可能需要对现有的应用程序进行大量的重构,才能使其正常工作
实例
可以将数据直接接收到Tensor张量的底层缓冲区中:
// Allocate a tensor
auto tensor = allocator->allocate_tensor<float>({6, 6});
// Get a pointer to the underlying buffer
auto data = tensor->get_raw_data_ptr();
// Some function that writes data directly into this buffer
recv_message_into_buffer(data);
或者可以手动填写Tensor张量:
// Allocate a tensor
auto tensor = allocator->allocate_tensor<float>({256, 256});
const auto &dims = tensor->get_dims();
// Get an accessor
auto accessor = tensor->accessor<2>();
// Write data directly into it
for (int i = 0; i < dims[0]; i++)
{
for (int j = 0; j < dims[1]; j++)
{
accessor[i][j] = i * j;
}
}
甚至可以将其与TBB并行:
// Allocate a tensor
auto tensor = allocator->allocate_tensor<float>({256, 256});
const auto &dims = tensor->get_dims();
// Get an accessor
auto accessor = tensor->accessor<2>();
// Write data into the tensor in parallel
tbb::parallel_for(
// Parallelize in blocks of 16 by 16
tbb:blocked_range2d<size_t>(0, dims[0], 16, 0, dims[1], 16),
// Run this lambda in parallel for each block in the range above
[&](const blocked_range2d<size_t>& r) {
for(size_t i = r.rows().begin(); i != r.rows().end(); i++)
{
for(size_t j = r.cols().begin(); j != r.cols().end(); j++)
{
accessor[i][j] = i * j;
}
}
}
);
包装现有内存
如果已经在某个缓冲区中保存了数据,那么这个方法很好。
正向
在进程内执行期间,这将在没有副本的情况下工作
如果已经有数据很容易做到
反向
需要了解什么是删除者以及如何正确使用
为了有效地使用TF,数据需要64字节对齐
注意:这不是一个硬性要求,但是TF可以在引擎盖下复制未对齐的数据
与#1相比,这会在进程外执行期间生成一个额外的副本
实例
从cv::Mat包装数据:
cv::Mat image = ... // An image from somewhere
auto tensor = allocator->tensor_from_memory<uint8_t>(
// Dimensions
{1, image.rows, image.cols, image.channels()},
// Data
image.data,
// Deleter
[image](void * unused) {
// By capturing `image` in this deleter, we ensure
// that the underlying data does not get deallocated
// before we're done with the tensor.
}
);
将数据复制到Tensor张量中
正向
很容易做到
无内存对齐要求
不需要使用删除程序
反向
在进程内执行期间总是生成一个额外的副本
与#1相比,这会在进程外执行期间生成一个额外的副本(尽管此副本是由用户显式编写的)
实例
从cv::Mat复制:
cv::Mat image = ... // An image from somewhere
auto tensor = allocator->allocate_tensor<uint8_t>(
// Dimensions
{1, image.rows, image.cols, image.channels()}
);
// Copy data into the tensor
tensor->copy_from(image.data, tensor->get_num_elements());
该用哪一个?
一般来说,按业绩衡量的方法顺序如下:
直接将数据写入Tensor张量
包装现有内存
将数据复制到Tensor张量中
也就是说,分析是朋友。
简单性和性能之间的折衷对于大Tensor张量和小Tensor张量也是不同的,因为副本对于小Tensor张量更便宜。
高效Tensor张量生成的更多相关文章
- pytorch中tensor张量数据基础入门
pytorch张量数据类型入门1.对于pytorch的深度学习框架,其基本的数据类型属于张量数据类型,即Tensor数据类型,对于python里面的int,float,int array,flaot ...
- 深度学习框架Tensor张量的操作使用
- 重点掌握基本张量使用及与numpy的区别 - 掌握张量维度操作(拼接.维度扩展.压缩.转置.重复……) numpy基本操作: numpy学习4:NumPy基本操作 NumPy 教程 1. Tens ...
- [PyTorch 学习笔记] 1.2 Tensor(张量)介绍
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/tensor_introduce1.py https: ...
- 8 tensorflow修改tensor张量矩阵的某一列
1.tensorflow的数据流图限制了它的tensor是只读属性,因此对于一个Tensor(张量)形式的矩阵,想修改特定位置的元素,比较困难. 2.我要做的是将所有的操作定义为符号形式的操作.也就是 ...
- TensorFlow中的 tensor 张量到底是什么意思?
详见[Reference]: TensorFlow中的“Tensor”到底是什么? 以下摘录一些要点: 这个图好生动呀!~ 标量和向量都是张量(tensor).
- pytorch中tensor张量的创建
import torch import numpy as np print(torch.tensor([1,2,3])) print(torch.tensor(np.arange(15).reshap ...
- 更短且不失高效的UUID生成算法
Java原生的UUID长度为36位,嫌长 这里自己实现了一套自己的算法,来生成较短的UUID 由雪花算法启发而来, 大致原理是利用时间戳+随机值做值,然后转换成62进制(当然这个进制数你也可以搞成更多 ...
- TensorFlow tensor张量拼接concat - split & stack - unstack
TensorFlow提供两种类型的拼接: tf.concat(values, axis, name='concat'):按照指定的已经存在的轴进行拼接 tf.stack(values, axis=0, ...
- tensorflow中张量(tensor)的属性——维数(阶)、形状和数据类型
tensorflow的命名来源于本身的运行原理,tensor(张量)意味着N维数组,flow(流)意味着基于数据流图的计算,所以tensorflow字面理解为张量从流图的一端流动到另一端的计算过程. ...
随机推荐
- 【Springboot】Springboot监听器Demo
/** * @author: yq * @date: 2020/8/31 0:01 * @description 自定义事件 */ @Data public class MyEvent extends ...
- 病毒木马查杀实战第025篇:JS下载者脚本木马的分析与防御
前言 这次我与大家分享的是我所总结的关于JS下载者脚本木马的分析与防御技术.之所以要选择这样的一个题目,是因为在日常的病毒分析工作中,每天都会遇到这类病毒样本,少则几个,多则几十个(当然了,更多的样本 ...
- Python中sys模块的使用
目录 sys模块 sys.argv() sys.exit(0) sys.path sys.modules sys模块负责程序与python解释器的交互,提供了一系列的函数和变量,用于操控python的 ...
- 如何以最简单的方式安装 KALI 渗透测试框架系统
0x01 第一步下载 KALI 百度搜索 KALI 官网,找到下载区,我选的是 64 位标准版,但是推荐下载 32 位(功能貌似更全) 这个为下载后的 iso 镜像文件 0x02 第二步打开虚拟机,配 ...
- visual studio 将他人的 vtk 程序在本机生成
在网上下载了一些关于vtk的资源,在本机使用visual studio 打开后,生成时出现类似与以下的错误 无法打开包括文件:"vtkStructuredPointsToPolyDataFi ...
- 一个或多个筛选器或者Listeners启动失败
问题描述 运行ssm项目,tomcat启动后报下面的错误. org.apache.catalina.core.StandardContext.startInternal 一个或多个listeners启 ...
- 使用乌龟Git连接github
之前自己是在Gitee+乌龟Git来进行管理项目,因为特殊的需求,需要再Github+乌龟Git来进行管理项目,这盘博客主要讲解的就是这个. 安装环境 Git 安装参考链接:https://www.c ...
- SAP ABAP ALV 颜色设置(两个ALV函数例子) 列 行 单元格
@[TOC](设置ALV颜色)# 前言淦! 要求花花绿绿的ALV ,那就淦他! 需要的参数和对应颜色放在最后.稍微改改就能用. 介绍两个常用的ALV函数实现1.REUSE_ALV_GRID_DISPL ...
- 在微信框架模块中,基于Vue&Element前端的事件和内容的管理
在微信后台管理中,我们需要定义好菜单对应的事件管理,因为微信通过菜单触发相关的事件,因此菜单事件的响应关系,我们如果处理好,就能构建出我们的微信应用入口了.通过入口,我们可以响应用户菜单的事件,如响应 ...
- 微服务·API网关
阅文时长 | 3.52分钟 字数统计 | 1232字符 主要内容 | 1.什么是API网关 2.微服务中的API网关 3.几种部署策略 『微服务·API网关』 编写人 | SCscHero 编写时间 ...