CSAcademy Prefix Suffix Counting 题解

题意

给你两个数字\(N\)和\(M\),现在\(K\)表示\(M\)的位数。问你从\(1\)到\(N\),有多少个数字满足\(M\)同时是它的前\(K\)个数字和后\(K\)个数字。

思路

我们现在假设\(N\)和\(M\)都是字符串,如果没有特别提及,都作为字符串处理。

假设有一个数字\(S\)大于等于\(1\)小于等于\(N\),我们可以分类讨论它的情况:(同样\(S\)作为字符串处理)

  1. \(S\)的长度大于等于\(2K\),那么前缀和后缀不会互相影响,中间的空出的没填部分在满足这个数字的值小于等于\(N\)的情况下随便填。
  2. \(S\)的长度小于\(2K\),那么前缀和后缀会互相重叠,你需要保证它们不会互相冲突,也就是仍旧满足前后缀都是\(M\)。而且,你也没有可以自由地填进去的数字了。

做法

对于上文提到的情况,可以分别实现:

  1. 我们枚举当前这个串/数字的长度,假如它的总长度小于\(N\)的总长度,那么它一定小于\(N\),中间的空当可以随便填。假如它的总长度等于\(N\)的长度,那么我们枚举某一位,在这一位前,所有的数字都和\(N\)中的一样,这一位的数字比\(N\)的这一位小了,那么后面的就随便填。特别地,有可能这一位在前\(K\)个数字中出现过了,那么中间的所有数位都随便填,或者,中间所有数位都填\(0\)时,当前的数字仍旧比\(N\)大,那么就没有合法方案。
  2. 同样的,枚举当前串/数字的长度,满足前后缀重叠部分相同这一条件需要快速判断,可以使用Z或者KMP等字符串匹配方法快速计算。

程序

做法,使用Z匹配前后缀。

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int mod=1000000007; char s[1000005];//s表示题目中的数字N
char t[1000005];//t表示题目中的数字M
int n,m;//n, m分别表示题目中的N, M的长度
ll pw[1000005],ans;//pw[i]表示10的i次方对mod取模后的大小,ans表示最终答案 bool check(int emp){//check表示中间空出了emp个填0的数位的时候,前后缀是M的数字是否小于等于N,emp<0时,表示前后缀的M重叠了几个位置
char *r=new char[n+1];
memset(r,'0',n+1);
memcpy(r+1+n-(m+emp+m),t+1,m);
memcpy(r+1+n-m,t+1,m);//构造一个前后缀为M的数字,长度小于N时高位补零
bool fl=false,va=true;
for(int i=1;i<=n;i++){
if(r[i]<s[i])fl=true;
if(r[i]>s[i]&&!fl)va=false;
}//判断大小关系(数学意义)
delete[] r;
return va;
} int main(){ ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0); pw[0]=1;
for(int i=1;i<=1000000;i++)pw[i]=pw[i-1]*10%mod;//预处理
cin>>s+1;
n=strlen(s+1);
cin>>t+1;
m=strlen(t+1);
if(check(-m))ans++;//单个M作为数字,这里其实可能会出锅,但数据中没有
int *z=new int[m+1],l=1,r=1;
z[1]=m;
for(int i=2;i<=m;i++){
z[i]=0;
if(i>r){
l=i;r=i-1;
while(r<m&&t[r+1]==t[z[i]+1])r++,z[i]++;
}else{
if(i+z[i-l+1]<=r){
z[i]=z[i-l+1];
}else{
l=i;
z[i]=r-i+1;
while(r<m&&t[r+1]==t[z[i]+1])r++,z[i]++;
}
}
if(i+z[i]-1==m){
if(m+m-z[i]<n||(m+m-z[i]==n&&check(-z[i])))ans++;
}
}
delete[] z;//Z算法
if(m+m<n||(m+m==n&&check(0)))ans++;//计算有数字形如M+M时是否合法
for(int i=1;m+i+m<n;i++){//枚举空出了i个数字时
ans=(ans+pw[i])%mod;
}
if(m+m<n&&check(n-m-m)){
int emp=n-m-m;
bool pref=false,suff=true,suf=false;//pref表示前K个数字是否已经比N小了,这样可以随便填,suff表示M是否小于等于N的K个数字,是就可以让中间的数字全部等于N对应数位
for(int i=1;i<=m;i++){
if(s[i]>t[i])pref=true;
if(s[i+n-m]>t[i])suf=true;
if(s[i+n-m]<t[i]&&!suf)suff=false;
}
if(pref)ans=(ans+pw[emp])%mod;//加上中间任意填的方案
else{
ans=(ans+suff)%mod;//加上suff的方案
for(int i=m+1;i<=n-m;i++){
ans=(ans+pw[n-m-i]*(s[i]-'0'))%mod;//加上当前位前面的数字和N相同,当前位小于N对应数位,后面随便填的方案
}
}
}
cout<<ans%mod<<endl; return 0;
}

CSAcademy Prefix Suffix Counting 题解的更多相关文章

  1. mybatis之<trim prefix="" suffix="" suffixOverrides="" prefixOverrides=""></trim>的含义

    转自:http://blog.csdn.net/qq_33054511/article/details/70490046   <trim prefix="" suffix=& ...

  2. mybatis之<trim prefix="" suffix="" suffixOverrides="" prefixOverrides=""></trim>

    1.<trim prefix="" suffix="" suffixOverrides="" prefixOverrides=&quo ...

  3. [USACO17JAN]Promotion Counting 题解

    前言 巨佬说:要有线段树,结果蒟蒻打了一棵树状数组... 想想啊,奶牛都开公司当老板了,我还在这里码代码,太失败了. 话说奶牛开个公司老板不应该是FarmerJohn吗? 题解 刚看到这道题的时候竟然 ...

  4. POJ 2386 Lake Counting 题解《挑战程序设计竞赛》

    地址 http://poj.org/problem?id=2386 <挑战程序设计竞赛>习题 题目描述Description Due to recent rains, water has ...

  5. CF1106A Lunar New Year and Cross Counting 题解

    Content 试求出在一个 \(n\times n\) 的地图 \(M\) 中,满足 \(1\leqslant i,j\leqslant n\) 且 \(M_{i,j}=M_{i+1,j+1}=M_ ...

  6. [LeetCode] Prefix and Suffix Search 前后缀搜索

    Given many words, words[i] has weight i. Design a class WordFilter that supports one function, WordF ...

  7. [Swift]LeetCode745. 前缀和后缀搜索 | Prefix and Suffix Search

    Given many words, words[i] has weight i. Design a class WordFilter that supports one function, WordF ...

  8. 【leetcode】745. Prefix and Suffix Search

    题目如下: Given many words, words[i] has weight i. Design a class WordFilter that supports one function, ...

  9. AtCoder Grand Contest 040 简要题解

    从这里开始 比赛目录 A < B < E < D < C = F,心情简单.jpg. Problem A >< 把峰谷都设成 0. Code #include &l ...

随机推荐

  1. SuperEdge再添国产智能加速卡支持,为边缘智能推理再提速10倍

    作者 寒武纪AE团队,腾讯云容器中心边缘计算团队,SuperEdge 开发者 SuperEdge 支持国产智能加速卡寒武纪 MLU220 SuperEdge 对应的商业产品 TKE Edge 也一直在 ...

  2. SpringCloud微服务实战——搭建企业级开发框架(二十三):Gateway+OAuth2+JWT实现微服务统一认证授权

      OAuth2是一个关于授权的开放标准,核心思路是通过各类认证手段(具体什么手段OAuth2不关心)认证用户身份,并颁发token(令牌),使得第三方应用可以使用该token(令牌)在限定时间.限定 ...

  3. P6072 『MdOI R1』Path

    考虑我们有这样操作. 我们只要维护两点在子树内和两点在子树外的异或和即可. 前者可以类似于线段树合并的trie树合并. 后者有两种做法: 一种是把dfn序翻倍:然后子树补变成了一个区间最大异或问题,可 ...

  4. Codeforces 295D - Greg and Caves(dp)

    题意: 给出一个 \(n \times m\) 的矩阵,需对其进行黑白染色,使得以下条件成立: 存在区间 \([l,r]\)(\(1\leq l\leq r\leq n\)),使得第 \(l,l+1, ...

  5. Codeforces 521E - Cycling City(点双连通分量+分类讨论)

    Codeforces 题面传送门 & 洛谷题面传送门 大家都是暴力找生成树然后跳路径,代码不到 50 行(暴论)的一说--好,那本蒟蒻决定提供一种代码 150 行,但复杂度也是线性的分类讨论做 ...

  6. Topcoder 14719 - RatingProgressAward(最小割)

    题面传送门 神仙最小割--好久没写过网络流了,故写题解以祭之( 首先考虑一个非常 trivial 的问题:如果知道排列顺序之后怎样计算最大值,用脚趾头想一下就能知道是原序列的最大子段和,因为每个课程之 ...

  7. SAM 感性瞎扯

    SAM 做题笔记. 这里是 SAM 感性瞎扯. 最近学了后缀自动机(Suffix_Automaton,SAM),深感其巧妙之处,故写文以记之. 部分文字与图片来源于 OI-Wiki,hihoCoder ...

  8. go变量、类的概念以及类的使用方式,嵌套结构体

    go变量.类的概念以及类的使用方式,嵌套结构体 Go变量 go使用var声明变量,当声明变量时,这个变量对应的值总是会被初始化.这个值要么用指定的值初始化,要么用零值(即变 量类型的默认值)做初始化. ...

  9. 什么是GP、LP、PE、VC、FOF?

    GP GP是General Partner的缩写,意思是普通合伙人.投资者经常听到的一些基金.风投等投资公司采用的就是普通合伙人的制度,在美国等发达国家,普通合伙人很常见. 其实,说白了,GP最开始指 ...

  10. STM32 BootLoader升级固件

    一.知识点 1.BootLoader就是单片机启动时候运行的一段小程序,这段程序负责单片机固件的更新,也就是单片机选择性的自己给自己下程序.可以更新,也可以不更新,更新的话,BootLoader更新完 ...