Content

小 P 想给 \(n\) 位朋友各发一张邀请函,每张邀请函需要耗费 \(2\) 张红色纸,\(5\) 张绿色纸和 \(8\) 张蓝色纸。商店里面的纸是一堆一堆卖的,每堆里面有 \(k\) 张只含有红、绿、蓝三种颜色中的一个颜色的纸。求小 P 至少要买多少堆。

数据范围:\(1\leqslant n,k\leqslant 10^8\)。

Solution

直接看每种颜色需要多少堆,由于只能一堆一堆地买,所以只能多买,不能少买,因此答案就很显而易见了,分别是 \(\left\lceil\dfrac{2n}{k}\right\rceil,\left\lceil\dfrac{5n}{k}\right\rceil\) 和 \(\left\lceil\dfrac{8n}{k}\right\rceil\)。

Code

int n, k;

int main() {
getint(n), getint(k);
int ans = ceil(n * 2.0 / k) + ceil(n * 5.0 / k) + ceil(n * 8.0 / k);
writeint(ans);
return 0;
}

CF1080A Petya and Origami 题解的更多相关文章

  1. Codeforces Round #524 (Div. 2) A. Petya and Origami

    A. Petya and Origami 题目链接:https://codeforc.es/contest/1080/problem/A 题意: 给出n,k,k表示每个礼品里面sheet的数量(礼品种 ...

  2. Petya and Origami

    Petya is having a party soon, and he has decided to invite his nn friends. He wants to make invitati ...

  3. CF111A Petya and Inequiations 题解

    Content 请找出一个由 \(n\) 个正整数组成的数列 \(\{a_1,a_2,\dots,a_n\}\),满足以下两种条件: \(\sum\limits_{i=1}^na_i^2\geqsla ...

  4. Codeforces Round #524 (Div.2)题解

    题解 CF1080A [Petya and Origami] 这道题其实要我们求的就是 \[\lceil 2*n/k \rceil + \lceil 5*n/k \rceil + \lceil 8*n ...

  5. Codeforces Round #524 (Div. 2)(前三题题解)

    这场比赛手速场+数学场,像我这样读题都读不大懂的蒟蒻表示呵呵呵. 第四题搞了半天,大概想出来了,但来不及(中途家里网炸了)查错,于是我交了两次丢了100分.幸亏这次没有掉rating. 比赛传送门:h ...

  6. Codeforces Round #524 (Div. 2)

    A. Petya and Origamitime limit per test1 secondmemory limit per test256 megabytesinputstandard input ...

  7. CodeForces-Round524 A~D

    A. Petya and Origami time limit per test  1 second   memory limit per test  256 megabytes input stan ...

  8. Codeforces Round #524 (Div. 2) Solution

    A. Petya and Origami Water. #include <bits/stdc++.h> using namespace std; #define ll long long ...

  9. 【题解】折纸 origami [SCOI2007] [P4468] [Bzoj1074]

    [题解]折纸 origami [SCOI2007] [P4468] [Bzoj1074] 传送门:折纸 \(\text{origami [SCOI2007] [P4468]}\) \(\text{[B ...

随机推荐

  1. 为了拿捏 Redis 数据结构,我画了 40 张图(完整版)

    大家好,我是小林. Redis 为什么那么快? 除了它是内存数据库,使得所有的操作都在内存上进行之外,还有一个重要因素,它实现的数据结构,使得我们对数据进行增删查改操作时,Redis 能高效的处理. ...

  2. 让HTML5游戏来的更猛烈些吧!--青岛思途

    作为著名的网页游戏门户,Kongregate在业界也算是鼎鼎大名了.小编与它的初识应是在几年前,只记得当时其平台上的游戏基本都是需要Flash的支持,可前几天,Adobe宣布计划停止Flash的更新和 ...

  3. 入坑 OI 249561092 周年之际的一些感想

    2018.2.10~2021.2.10 又是一年的 2 月 10 日,今天的到来意味着我 OI 生涯的第三年已经结束,即将开启 OI 生涯的第四年了.回顾这三年以来自己由懵懂.无知慢慢变成熟的历程,感 ...

  4. Codeforces 1499G - Graph Coloring(带权并查集+欧拉回路)

    Codeforces 题面传送门 & 洛谷题面传送门 一道非常神仙的题 %%%%%%%%%%%% 首先看到这样的设问,做题数量多一点的同学不难想到这个题.事实上对于此题而言,题面中那个&quo ...

  5. 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)

    洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...

  6. Atcoder Grand Contest 015 F - Kenus the Ancient Greek(找性质+乱搞)

    洛谷题面传送门 & Atcoder 题面传送门 一道难度 Au 的 AGC F,虽然看过题解之后感觉并不复杂,但放在现场确实挺有挑战性的. 首先第一问很简单,只要每次尽量让"辗转相除 ...

  7. P5599【XR-4】文本编辑器

    题目传送门. 题意简述:给定长度为 \(n\) 的文本串 \(a\) 和有 \(m\) 个单词的字典 \(s_i\).\(q\) 次操作,每次求出字典内所有单词在 \(a[l,r]\) 的出现次数,或 ...

  8. Perl字符串处理函数用法集锦

    Perl字符串处理函数 0.函数名 index 调用语法position=index(string,substring,position); 解说返回子串substring在字符串string中的位置 ...

  9. 学习java的第二十一天

    一.今日收获 1.java完全学习手册第三章算法的3.2排序,比较了跟c语言排序上的不同 2.观看哔哩哔哩上的教学视频 二.今日问题 1.快速排序法的运行调试多次 2.哔哩哔哩教学视频的一些术语不太理 ...

  10. Spark(七)【RDD的持久化Cache和CheckPoint】

    RDD的持久化 1. RDD Cache缓存 ​ RDD通过Cache或者Persist方法将前面的计算结果缓存,默认情况下会把数据以缓存在JVM的堆内存中.但是并不是这两个方法被调用时立即缓存,而是 ...