[题解] Luogu P5446 [THUPC2018]绿绿和串串

·题目大意

  • 定义一个翻转操作\(f(S_n)\),表示对于一个字符串\(S_n\),

    有\(f(S)= \{S_1,S_2,...,S_{n-1},S_n,S_{n-1},...S_2,S_1 \}\)。
  • 现在给定一个长度为\(n\)的字符串\(S^{'}\)表示原字符串\(S\)经过若干次(可能为0)旋转之后的一个前缀,

    求原来字符串可能的长度\(l\)。
  • 显然当\(l > n\)时一定可行,所以只需要输出所有的\(l\leq n\)即可。

    \(|S|\leq 10^6,\Sigma |S| \leq 5 \times 10^6\)

·解题思路

首先想到用 \(Manacher\) 。

由于进行翻转操作后回文串长度必定为奇数,所以不用插入字符,然后考虑什么情况下长度是可行的。

  • 我们定义一个 \(flag\) 数组,\(flag[i]\) 表示长度为 \(i\) 时是可行的。回文数组为\(p\),\(p[i]\)表示第 \(i\) 位的回文半径位 \(p[i]\)
  • 如果只进行了一次翻转操作即可使得前缀为\(S^{'}\),那么有 \(i + p[i] - 1 == n\)
  • 如果需要进行\(k\)次翻转才可以使得前缀为\(S^{'}\),那么有 \(i - p[i] + 1 == 1\),然后可以转化为进行\(k - 1\)次的情况。

    但是实际操作中我们不用跑 \(k\) 次,只需要倒着跑并记录 \(flag\) ,因为当我们处理长度为 \(i\) 的时候,\(flag[i + 1]\) 到 \(flag[n]\) 都已经处理过了,所以判断 \(flag[i + p[i] - 1] == 1\)即可。
  • 时间复杂度为\(O(n)\)。

代码实现

#include <iostream>
#include <cstring>
using namespace std;
#define reg register
namespace io {
char ch[20];
template<typename T>inline void write(T x) {
(x < 0) && (x =- x, putchar('-'));
(x) || putchar('0');
reg int i = 0;
while (x) ch[i++] = x % 10 ^48, x /= 10;
while (i) putchar(ch[--i]);
}
}//快写
#define wt io::write
const int maxN = 1000010;
char s[maxN];
int p[maxN], flag[maxN];
int n;
void work();
int main() {
int t;
scanf("%d", &t);
while (t--) work();
return 0;
}
void work() {
for (reg int i = 1; i <= n; ++i) flag[i] = p[i] = s[i] = 0;
n = 1; s[0] = '@';
scanf("%s", s + 1);
while (s[n]) ++n;
--n;
for (reg int i = 1, r = 0, mid = 0; i <= n; ++i) {
if (i <= r) p[i] = min(p[mid * 2 - i], r - i + 1);
while (s[i + p[i]] == s[i - p[i]]) ++p[i];
if (i + p[i] - 1 >= r) r = i + p[i] - 1, mid = i;
}//Manacher
for (reg int i = n; i; --i) {
if (i + p[i] - 1 == n || (flag[i + p[i] - 1] && i - p[i] + 1 == 1)) flag[i] = 1;
}//上面说的两种情况
for (reg int i = 1; i <= n; ++i)
if (flag[i]) wt(i), putchar(' ');
putchar('\n');
}

[题解] Luogu P5446 [THUPC2018]绿绿和串串的更多相关文章

  1. 【题解】P5446 [THUPC2018]绿绿和串串(manacher)

    [题解]P5446 [THUPC2018]绿绿和串串(manacher) 考虑对于一个串进行\(f\)操作,就是让他变成一个以最后一个节点为回文中心的回文串. 那么对于某个位置\(p\),假如它是一个 ...

  2. LOJ#6387 「THUPC2018」绿绿与串串 / String (Manacher || hash+二分)

    题目描述 绿绿和 Yazid 是好朋友.他们在一起做串串游戏. 我们定义翻转的操作:把一个串以最后一个字符作对称轴进行翻转复制.形式化地描述就是,如果他翻转的串为 RRR,那么他会将前 ∣R∣−1个字 ...

  3. 洛谷$P5446\ [THUPC2018]$绿绿和串串 $manacher$

    正解:$manacher$ 解题报告: 传送门$QwQ$ 考虑这个操作的实质是啥$QwQ$?其实就,变成以最后一个节点为回文中心的回文子串嘛$QwQ$.显然就先跑个马拉车再说呗$QwQ$. 然后接着考 ...

  4. LOJ6387 [THUPC2018] 绿绿与串串 【manacher】

    题目分析: 比较简单,先跑一边manacher,然后对于回文部分可以碰到末尾的一定满足条件,否则向后转移. 代码: #include<bits/stdc++.h> using namesp ...

  5. loj6387 「THUPC2018」绿绿与串串 / String

    还是很好做的,大致就是manacher,每个位置为中心的最长回文串要是能抵到最右边就合法,要是能抵到最左边,那这个点的是否合法取决于以这个点为中心的最长回文串的右端点是否合法. #include &l ...

  6. 题解 Luogu P2499: [SDOI2012]象棋

    关于这道题, 我们可以发现移动顺序不会改变答案, 具体来说, 我们有以下引理成立: 对于一个移动过程中的任意一个移动, 若其到达的位置上有一个棋子, 则该方案要么不能将所有棋子移动到最终位置, 要么可 ...

  7. 题解 luogu P1144 【最短路计数】

    本蒟蒻也来发一次题解第一篇请见谅 这个题有几个要点 1.无向无权图,建图的时候别忘记建来回的有向边[因此WA掉1次 2.无权嘛,那么边长建成1就好了2333333 3.最短路采用迪杰斯特拉(别忘用堆优 ...

  8. 题解 Luogu P1110 【[ZJOI2007]报表统计】

    感谢 @cmy962085349 提供的hack数据,已经改对了. 先声明,我好像是题解里写双$fhq$ $treap$里唯一能过的...(最后两个点啊) 思路:首先看题目,$MIN_GAP_SORT ...

  9. 题解 Luogu P3370

    讲讲这题的几种做法: 暴力匹配法 rt,暴力匹配,即把字符串存起来一位一位判相等 时间复杂度$ O(n^2·m) $ 再看看数据范围 \(n\le10^5,m\le10^3\) 当场爆炸.当然有暴力分 ...

随机推荐

  1. Luogu2839 [国家集训队]middle 题解

    题目很好,考察对主席树的深入理解与灵活运用. 首先看看一般解决中位数的思路,我们二分一个 \(mid\),将区间中 \(\ge mid\) 的数置为 \(1\),小于的置为 \(-1\),然后求区间和 ...

  2. [POI2008]PER

    很有思维的一道题 这个题的题面非常简单,出题人很友好,没有搞什么奇怪的背景,(卡农(P3214)的作者看看人家),所以理解题面就是: 一句话题意: 给定一个长度为 \(n\) 的数列,求这个数列是在其 ...

  3. (opencv08)cv.resize()调整图像大小

    (opencv08)cv.resize()调整图像大小 img = cv2.resize(src, dsize, dst=None, fx=None, fy=None, interpolation=N ...

  4. 深入刨析tomcat 之---第10篇 how tomcat works 第13章,Response 发送错误信息 sendError

    writedby 张艳涛 在浏览器中发送一个错误应用url 那么tomcat是如何发送错误的呢? 基本上是发送http 的response协议,分为两部分一部分是response设置头信息, 那么先分 ...

  5. ThinkPHP5 SQL注入漏洞 && 敏感信息泄露

    访问看到用户名被显示了 http://192.168.49.2/index.php?ids[]=1&ids[]=2 访问http://your-ip/index.php?ids[0,updat ...

  6. python中单例模式的创建

    # 单例模式(使用装饰器) def singleton(cls): instance = {} def wrapper(*args,**kwargs): if cls not in instance: ...

  7. 腾讯云分布式数据库TDSQL在银行传统核心系统中的应用实践

    本文是腾讯云TDSQL首席架构师张文在腾讯云Techo开发者大会现场的演讲实录,演讲主题是<TDSQL在银行传统核心系统中的应用实践>. 我是TDSQL架构师张文,同时也是TDSQL的开发 ...

  8. 如何区别php,jsp,asp,aspx随笔

    PHP是一种跨平台的服务器端的嵌入式脚本语言.它大量地借用C.Java 和 Perl 语言的语法,并耦合PHP自己的特性,使WEB开发者能够快速地写出动态产生页面.它支持目前绝大多数数据库.还有一点, ...

  9. 学废了系列 - WebGL与Node.js中的Buffer

    WebGL 和 Node.js 中都有 Buffer 的使用,简单对比记录一下两个完全不相干的领域中 Buffer 异同,加强记忆. Buffer 是用来存储二进制数据的「缓冲区」,其本身的定义和用途 ...

  10. DASCTF七月赛两道Web题复现

    Ezfileinclude(目录穿越) 拿到http://183.129.189.60:10012/image.php?t=1596121010&f=Z3F5LmpwZw== t是时间,可以利 ...