普通的模式匹配算法(BF算法)

子串的定位操作通常称为模式匹配算法

假设有一个需求,需要我们从串“a b a b c a b c a c b a b"中,寻找内容为“a b c a c”的子串。

此时,称“a b a b c a b c a c b a b"为主串S,“a b c a c”为模式串T

很容易想到,通过遍历主串S,与模式串T的首字母逐一比对,当主串S中的某一元素i与模式串T首字符j相同,则将主串S中第i+1个字符与模式串T的j+1个字符继续匹配。若匹配成功,则继续将主串S中的第i+2个字符与模式串T中的第j+2个字符进行比对。若匹配失败,则将主串S的第i+1个字符与模式串的第j个字符重新比对....

将上述文字转化为图像如下:

按照动画的显示效果很容易理解BF模式匹配算法。

通过分析可以得出,每次匹配失败之后,i的指向又将回到主串S的i-j+2位置

通过C语言伪代码的方式实现:

若将主串S的长度看作m,将模式串T的长度看作n

则该代码的时间复杂度为O(m+n)

BF算法确实实现了模式匹配的目的,但同时也有较大的缺陷

模式匹配改进算法(KMP算法)的引出

假设目前有这样一个主串S与模式串T

主串S:



模式串T:

比对过程:



显而易见,使用BF模式匹配算法,一旦遇到主串S元素与模式串T高度重合,但鲜有不同。

此种算法将进行大量重复的“主串S回退”,如此一来,时间复杂度将达到

O(m*n)

而后,D.E.Knuth与V.R.Pratt和J.H.Morris发现了一套模式匹配的改进算法,根据他们的名字的字母,该算法被命名为:

KMP算法

KMP算法

KMP算法基本概念

KMP算法可以在时间复杂度为O(m+n)的时间数量级上完成模式匹配操作。

其不同点在于,在匹配失败之后,不需要回溯i指针

而是利用已经“部分匹配”的结果,将模式串T向右滑动尽可能远的距离



(KMP算法比对过程1)



(KMP算法比对过程2)



(KMP算法比对过程3)

从该描述中我们提取出要使用KMP算法最核心的三个问题:1.滑动的条件 2.滑动的模式 3.滑动距离k的求解

滑动的条件

这部分我们探究当发生“失配”后,主串S中的i应该与模式串T中的第几个字符(这里用K指代)继续进行比较。

在什么条件下我们可以将窗口进行“滑动”?或者说,怎样才叫发生了“部分匹配”?

这里给出严蔚敏版的《数据结构》中,对于“部分匹配”条件的定义(模式串为p,主串为s):

\[p_1p_2...p_{k-1} = s_{i-k+1}s_{i-k+2}...s_{i-1}
\]

\[p_{j-k+1}p_{j-k+2}...p_{j-1} = s_{i-k+1}s_{i-k+2}...s_{i-1}
\]

\[p_1p_2...p_{k-1} = p_{j-k+1}p_{j-k+2}...p_{j-1}
\]

刚看到这三个公式的时候,有点懵,但仔细比对之后可以发现

公式①说明:模式串p从头开始的子串与后面某段已发生“部分匹配”的主串s的子串q相同

公式②说明:模式串p在除开头以外,有一段子串与刚才的子串q发生了“部分匹配”

公式③说明:如果满足上述两个条件,则可以得出模式串p中有两端相同的子串

如果满足以上三个条件(满足前两个条件则第三个必定满足),则可以快速“滑动k个位置”来进行KMP模式匹配

滑动的模式

明确了前提条件之后,我们建立应该next[j]来保存每次比对结束后的K值

约定:

next[j] 条件 结果
0 当j等于1 将i向后移动一位
k 取Kmax,1<k<j 且 满足条件③ 将模式串的第k位与当前i对齐
1 其他情况 将模式串的第1位与当前i对齐

反映成代码形式:

滑动距离K的求解

\[p_1p_2...p_{k-1} = p_{j-k+1}p_{j-k+2}...p_{j-1}
\]
  • 可知next[j]仅与模式串有关而与主串无关

这里是整个KMP算法的核心部分,在我反反复复看几十遍严蔚敏版的《数据结构》之后,我终于理清了整个求解滑动距离的方法。

整个算法分为两个情况:

\[p_k = p_j
\]

以及

\[p_k ≠ p_j
\]

若满足第一种情况,有

next[j+1] = next[j] + 1;

若满足第二种情况,则又分为两种情况

  1. 设K' = next[k],当P[K'] = P[j] 时,有

    next[j+1] = next[k] + 1;
  2. 如果一直移动K'到j = 1时,还不能找到对应的P[K'] = P[j],那么直接有

    next[j+1] = 1;

在展开讲求next[j]的算法之前,必须要明确的一点是:

  • k,j,k',j+1分别代表串中的哪些位置

在这里给出明确定义:

  1. j+1就是你需要求k值的模式串位置
  2. j就是当前需要求出K值的字符的前一个字符
  3. k-1就是“已匹配”的前缀的最后一个字符
  4. k就是“已匹配”的前缀的最后一个字符的后一个字符

注意

  • 前缀一定要包含第1个字符
  • 后缀一定要包含希望求得K的字符的前一个字符

如图所示,如果我们要求得串中第5个字符的K值,假设前四个字符K值均已经求得,设我们的目标字符指针为j+1

又有第1个‘a’与第3个‘a'匹配,所以他们分别为k-1和j-1

因此第2个字符为k,第4个字符为j。

  • 重点来了

    让我们抛出一个例子,来理解next[j]的求法

    假设我们已知j=1,2,3,4的next[j]值分别为:0,1,1,2

    由于k-1和j-1已经”匹配“,则满足前置匹配条件,我们来比较pk和pj的内容,

    pk = b,pj = a;

    可见它们并不相等,因此k指向的b会甩锅给“next[k]”字符,而next[k] = 1,也就是串的第一个字符‘a'

    第一个字符‘a'成功与第j个字符‘a'相匹配,因此依照我们定义的的pk ≠ pj的第一种情况可以得到

    next[j+1] = next[k] + 1 = 2;

由此,我们可以通过之前定义的方式来确定所有的next[j]的值,下面给出串'abaabcac'的所有next[j]的值:

希望读者能拿起笔,从next[2]开始,计算到next[8]

相信计算完上表格的读者,已经对next[j]的计算方法有了更加深刻的理解

在这里我也分享出自己总结的口诀:

  • k,j相等,直接加1
  • k,j不等,层层甩锅
  • 甩锅失败,直接赋1
  • 甩锅成功,老板加1

释义:

  1. pk = pj:next[j+1] = next[j] + 1;
  2. pk ≠ pj: 甩锅
  3. p[k'] = pj:next[j+1] = next[k] + 1;
  4. p[k'] ≠ pj:next[j+1] = 1 or 继续向next[k']甩锅。

接下来给出代码实现求next[j]:

KMP算法的改进

通过分析代码我们可以发现,当模式串元素有多个重复元素:



他们的next[j]为:0,1,2,3,4

因此在比对时将出现i不动,j从调用next[j]3次的情况,

在这种情况下,我们可以让j=1,2,3,4只进行一次比对就使得i向后移动一位(也就是next[j] = 0)

改进算法如下:

改进之后next[j] = 0,0,0,0,4,成功避免了重复比对

浅谈KMP模式匹配算法的更多相关文章

  1. KMP模式匹配算法

    KMP模式匹配算法 相信很多人对于这个还有点不了解,或者说是不懂,下面,通过一道题,来解决软考中的这个问题! 正题: aaabaaa,其next函数值为多少? 对于这个问题,我们应该怎么做呢? 1.整 ...

  2. 线性表-串:KMP模式匹配算法

    一.简单模式匹配算法(略,逐字符比较即可) 二.KMP模式匹配算法 next数组:j为字符序号,从1开始. (1)当j=1时,next=0: (2)当存在前缀=后缀情况,next=相同字符数+1: ( ...

  3. C++编程练习(7)----“KMP模式匹配算法“字符串匹配

    子串在主串中的定位操作通常称做串的模式匹配. KMP模式匹配算法实现: /* Index_KMP.h头文件 */ #include<string> #include<sstream& ...

  4. 详细解读KMP模式匹配算法

    转载请注明出处:http://blog.csdn.net/fightlei/article/details/52712461 首先我们需要了解什么是模式匹配? 子串定位运算又称为模式匹配(Patter ...

  5. 浅谈MVVM模式和MVP模式——Vue.js向

    浅谈MVVM模式和MVP模式--Vue.js向 传统前端开发的MVP模式 MVP开发模式的理解过程 首先代码分为三层: model层(数据层), presenter层(控制层/业务逻辑相关) view ...

  6. [从今天开始修炼数据结构]串、KMP模式匹配算法

    [从今天开始修炼数据结构]基本概念 [从今天开始修炼数据结构]线性表及其实现以及实现有Itertor的ArrayList和LinkedList [从今天开始修炼数据结构]栈.斐波那契数列.逆波兰四则运 ...

  7. 字符串的模式匹配算法——KMP模式匹配算法

    朴素的模式匹配算法(C++) 朴素的模式匹配算法,暴力,容易理解 #include<iostream> using namespace std; int main() { string m ...

  8. 串、KMP模式匹配算法

    串是由0个或者多个字符组成的有限序列,又名叫字符串. 串的比较: 串的比较是通过组成串的字符之间的编码来进行的,而字符的编码指的是字符在对应字符集中的序号. 计算机中常用的ASCII编码,由8位二进制 ...

  9. 数据结构(三)串---KMP模式匹配算法

    (一)定义 由于BF模式匹配算法的低效(有太多不必要的回溯和匹配),于是某三个前辈发表了一个模式匹配算法,可以大大避免重复遍历的情况,称之为克努特-莫里斯-普拉特算法,简称KMP算法 (二)KMP算法 ...

随机推荐

  1. 判断状态栏是否显示以及获取状态栏高度的方法,及工具类列子【续:及OnGlobalLayoutListener的利用】

    http://www.jcodecraeer.com/a/anzhuokaifa/androidkaifa/2014/0731/1640.html 本篇博客是http://www.cnblogs.co ...

  2. PHP-Audit-Labs-Day2 - filter_var函数缺陷

    目录 分析 示例 payload 修复建议 Day02-CTF题解 参考链接 分析 先看源码 // composer require "twig/twig" require 've ...

  3. C++ //继承同名静态成员处理方式

    1 //继承同名静态成员处理方式 2 #include <iostream> 3 #include <string> 4 using namespace std; 5 6 cl ...

  4. C++STL—string类

    string容器 1.1 string容器的基本概念 string容器是一个类 这个容器中有一个指针,指针维护了一个数组 string容器提供copy.find.insert.replace等等功能 ...

  5. ElasticSearch进阶篇(一)--版本控制

    一.前言 ElasticSearch(以下简称ES)的数据写入支持高并发,高并发就会带来很普遍的数据一致性问题.常见的解决方法就是加锁.同样,ES为了保证高并发写的数据一致性问题,加入了类似于锁的实现 ...

  6. c++ 跨平台线程同步对象那些事儿——基于 ace

    前言 ACE (Adaptive Communication Environment) 是早年间很火的一个 c++ 开源通讯框架,当时 c++ 的库比较少,以至于谈 c++ 网络通讯就绕不开 ACE, ...

  7. Specify Default JDK on Ubuntu

    sudo update-alternatives --config java will produce: Selection Path Priority Status 0 /usr/lib/jvm/j ...

  8. Echarts 展示两条动态数据曲线

    利用Echarts 展示两条动态数据曲线,每1秒刷新一下数据,在echart官网例子基础上修改,修改了仿真数据的生成方式.生成数量,曲线数量,最总效果图如下: 详细代码如下: 遇到的主要问题点, 1, ...

  9. SQL注入:基本查询原理

    SQL注入概述 sql注入不需要精通sql的各种命令,只需要了解几个命令并会使用即可. SQL注入:一种针对于数据库的攻击 现在的web网站都需要数据库的支持. SQL部分重要内容: 库:databa ...

  10. Java入门姿势【面向对象3】构造方法及其重载_方法的调用

    上次我为大家写出啦"定义类与创建对象_了解局部变量",上篇文章代码可能较多,如没有了解透彻的话请打开下方文章在进行观看一下哦!! [Java入门姿势[面向对象2]定义类与创建对象_ ...