1301 - Monitoring Processes
Time Limit: 3 second(s) Memory Limit: 32 MB

We have planned to design a new operating system. Like other OS we will use the techniques of processes, schedulers, locks etc. The basic plan is to use the OS in hardwires that have low configurations. So, efficiency matters. That's why we want to minimize the cost as well as the power consumption. To be more specific, there are n processes, and each process starts its execution in timestamp si, and ends its execution in timestamp ti. For simplicity assume that the timestamps are represented as integers. Now when a process is being executed, we need a wrapper program to look after the process. The reason behind using wrapper programs is that, they will continuously check the processes and if any process tries to harm the system or wants to take hold of some restricted resources or even tries to invoke some forbidden methods, the wrapper will halt the process and generate appropriate error signals. But the problem is that a wrapper program cannot monitor more than one process in any timestamp and when it's been assigned to a process, it will have to wait until the process finishes. But after this, the same wrapper program can be used for monitoring another process. So, a wrapper program can be used for multiple processes but not more than one in any timestamp.

So, we have the process schedules and we want to find the number of wrapper programs to monitor them according to the given restrictions. As you are the leading programmer of this project, you are asked to find the minimum number of wrapper programs to monitor all the processes.

Input

Input starts with an integer T (≤ 20), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 50000). Each of the next n lines contains two integers si ti (1 ≤ si ≤ ti ≤ 109).

Output

For each case, print the case number and the minimum number of wrapper programs to monitor all the processes.

Sample Input

Output for Sample Input

2

2

1 3

3 5

4

1 10

10 20

11 21

3 5

Case 1: 2

Case 2: 2

Note

Dataset is huge, use faster I/O methods.


PROBLEM SETTER: JANE ALAM JAN
思路:离散化+线段树;
转换为求重复次数最多的点,因为重复处必须要分开,那么只要找到那个重复最多次数的点将这些段分成重复最多次数段即可。
  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<stdlib.h>
6 #include<queue>
7 #include<set>
8 using namespace std;
9 typedef long long LL;
10 typedef struct pp
11 {
12 int x;
13 int y;
14 int id;
15 } ss;int maxx;
16 ss ans[50005];
17 int ak[200000];
18 int tree[200000*4];
19 void in(int n,int m,int l,int r,int k)
20 {
21 if(l>m||r<n)
22 {
23 return ;
24 }
25 else if(l<=n&&r>=m)
26 {
27 tree[k]+=1;
28 return ;
29 }
30 else
31 {
32 in(n,(n+m)/2,l,r,2*k+1);
33 in((n+m)/2+1,m,l,r,2*k+2);
34 }
35 }
36 void fang(int n,int m,int k)
37 {
38 if(n==m)
39 { if(tree[k]>maxx)
40 maxx=tree[k];
41 return ;
42 }
43 else
44 {
45 tree[2*k+1]+=tree[k];
46 tree[2*k+2]+=tree[k];
47 fang(n,(n+m)/2,2*k+1);
48 fang((n+m)/2+1,m,2*k+2);
49 }
50 }
51 int main(void)
52 {
53 int i,j,k;
54 scanf("%d",&k);
55 int s;
56 int n,m;
57 for(s=1; s<=k; s++)
58 { maxx=0;
59 scanf("%d",&n);
60 int vv=0;
61 for(i=0; i<n; i++)
62 {
63 scanf("%d %d",&ans[i].x,&ans[i].y);
64 ak[vv++]=ans[i].x;
65 ak[vv++]=ans[i].y;
66 }
67 sort(ak,ak+vv);
68 for(i=0; i<n; i++)
69 {
70 int l=0;
71 int r=vv-1;
72 int id=0;
73 while(l<=r)
74 {
75 int mid=(l+r)/2;
76 if(ak[mid]<=ans[i].x)
77 {
78 id=mid;
79 l=mid+1;
80 }
81 else r=mid-1;
82 }
83 ans[i].x=id;
84 l=0;
85 r=vv-1;
86 while(l<=r)
87 {
88 int mid=(l+r)/2;
89 if(ak[mid]<=ans[i].y)
90 {
91 id=mid;
92 l=mid+1;
93 }
94 else r=mid-1;
95 }
96 ans[i].y=id;
97 }
98 memset(tree,0,sizeof(tree));
99 for(i=0; i<n; i++)
100 {
101 in(0,200000,ans[i].x,ans[i].y,0);
102
103 }
104 fang(0,200000,0);
105 printf("Case %d: %d\n",s,maxx);
106 }
107 return 0;
108 }

1301 - Monitoring Processes的更多相关文章

  1. Monitoring Processes with Supervisord

    If you're interested in more of this type of content, check out the Servers for Hackers eBook! As so ...

  2. 通过inotify监控linux文件系统变化

    http://www.mjmwired.net/kernel/Documentation/filesystems/inotify.txt http://www.ibm.com/developerwor ...

  3. The Best KPIs to Use in Your Company

    Here is a list of key performance indicators (KPIs) that should be used in contact centres, alongsid ...

  4. Apache CloudStack Features

    As a mature and turnkey Infrastructure-as-a-Service (IaaS) platform, Apache CloudStack has a compreh ...

  5. Zabbix二次开发_03api列表

    基于zabbix 3.0 https://www.zabbix.com/documentation/3.0/manual/api/reference Method reference This sec ...

  6. mysql的AB及读写和集群

    Mysql的AB及读写  第1章 Mysql的AB配置 1.1 master配置 1.2 slave配置 第2章 读写分离 2.1 安装mycat 2.2 启动mycat 2.3 登录mycat相关问 ...

  7. 基于MySQL+MHA+Haproxy部署高可用负载均衡集群

    一.MHA 概述 MHA(Master High Availability)是可以在MySQL上使用的一套高可用方案.所编写的语言为Perl 从名字上我们可以看到.MHA的目的就是为了维护Master ...

  8. Arch系统软件列表

    1. 安装统计 2. 安装列表 3. 安装说明 4. 作为依赖项的安装列表 5. 更正 mangaro使用减的方式安装系统.开箱即用的豪华版本,大部分人需要的都有了,同样包括个别用户不需要的,配置方面 ...

  9. 【线上测试之后的应用】基于MySQL+MHA+Haproxy构建高可用负载均衡数据库集群(详解)

    这里我们先介绍一下MHA是什么,其次就是它的应用与测试,同时为了大家呈现了数据备份案例,最后总结了使用情况以及注意事项和解决办法 一.MHA 概述 MHA(Master High Availabili ...

随机推荐

  1. C++栈溢出

    先看一段代码 #include<iostream> using namespace std; #define n 510 void sum(int a,int b) { cout<& ...

  2. 『学了就忘』Linux文件系统管理 — 65、LVM逻辑卷管理介绍

    目录 1.LVM逻辑卷管理的简介 2.LVM逻辑卷管理的原理 3.总结建立LVM分区的步骤 1.LVM逻辑卷管理的简介 LVM是Logical Volume Manager的简称,中文就是逻辑卷管理. ...

  3. entfrm-boot开发平台功能介绍【entfrm开源模块化无代码开发平台】

    简介 entfrm开发平台,是一个以模块化为核心的无代码开发平台,是一个集PC和APP快速开发.系统管理.运维监控.开发工具.OAuth2授权.可视化数据源管理与数据构建.API动态生成与统计.工作流 ...

  4. my37_MGR流控对数据库性能的影响以及MGR与主从的性能对比

    mysql> show variables like 'group_replication_flow_control_applier_threshold'; +----------------- ...

  5. springmvc中如何自定义类型转换器

    package com.hope.utils;import org.springframework.core.convert.converter.Converter;import org.spring ...

  6. 设计模式学习笔记之看懂UML类图

    什么是UML: UML(统一建模语言)是当今软件设计的标准图标式语言.对于一个软件系统而言,UML语言具有以下的功能:可视化功能.说明功能.建造功能和建文档功能. UML都包括什么类型的图: 使用案例 ...

  7. Java中的对于多态的理解

    一.什么是多态 面向对象的三大特性:封装.继承.多态 多态的定义:指允许不同类的对象对同一消息做出响应.即同一消息可以根据发送对象的不同而采用多种不同的行为方式.(发送消息就是函数调用) 实现多态的技 ...

  8. 1 - 基于ELK的ElasticSearch 7.8.x 技术整理 - 基础语法篇 - 更新完毕

    准备工作 0.什么是ElasticSearch?它和Lucene以及solr的关系是什么? 这些是自己的知识获取能力,自行百度百科 1.下载ElasticSearch的window版,linux版后续 ...

  9. Mysql配置文件 扩展详细配置

    目录 配置文件中有些特定参数 扩展配置 max_connections connect_timeout interactive_timeout|wait_timeout net_retry_count ...

  10. [BUUCTF]PWN——wustctf2020_closed

    wustctf2020_closed 附件 步骤: 例行检查,64位程序,开启了nx保护 本地试运行一下看看大概的情况 64位ida载入,首先是检索程序里的字符串,找到了后门 main函数里的关键函数 ...