Chapter 1 A Definition of Causal Effect
A: intervention, exposure, treatment
consistency: \(Y=Y^A\) when A observed.
1.1 Individual casual effects
假设我们要探究变量A与变量Y的关系, 在设定\(A=a\)的情况下, Y一致对应有\(Y^{a}\).
倘若A是二元的, 即\(\{0, 1\}\), 则有相应的\(Y^0, Y^1\).
则对于某个个体来讲, A对于Y有casual effect, 若\(Y^0 \not = Y^1\).
举个例子来讲, 给宙斯后面来一棍子(A=1), 宙斯是否会晕\(Y^1=0\) or \(Y^1 =1\), 或者啥也不做也就是\(A=0\), 宙斯的状态\(Y^0\).
当\(Y^1 \not = Y^0\) 的时候, 我们可以判断, 是否给宙斯来一棍对于宙斯下一刻会不会晕有casual effect, 反之就是没有.
1.2 Average casual effects
刚刚是针对个体的causal effect 的定义, 接下来是average casual effect的概念.
实际上, 就是针对一族个体的集合, 探究操作A对于所关心的Y的是否存在影响.
实际上, 就是判断
\]
的关系, 对于上面的二元的例子, 就是判断
\]
更进一步的, 由于\(Y\)本身也是二元的\(\{0, 1 \}\), 所以可以进一步简化为
\]
1.5 Causation versus association
我们可以知道, \(Y=Y^a, \: if \: A=a\), 更精准的
\]
这是因果推断里很重要的一致性(consistency)的概念, 或许把它作为一个假设更为合理.
要知道, 我们在实际计算causal effects 的时候用到的是边际概率分布\(\mathrm{Pr}(Y^a)\).
观察可知, 当\(A, Y^a\)相互独立的时候, 我们可以得到
\]
此时causation 和 association 便是一致的了.
association 可以理解为
\]
与causation非常类似.
想要区分二者的区别, 还是得看原文, 从例子的角度出发, 否者还是难以掌握.
一言以蔽之, association, 即条件概率, 实际上分析的是某一个特定人群执行某些操作的结果, 而causation则是希望在一个更大的范围内, 一视同仁的判断概操作对这些人的影响, 忽略这特定人群的某些特定性质的影响.
Chapter 1 A Definition of Causal Effect的更多相关文章
- Chapter 6 Graphical Representation of Causal Effects
目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...
- Chapter 4 Effect Modification
目录 4.1 Definition of effect modification 4.2 Stratification to identify effect modification 4.3 Why ...
- Targeted Learning R Packages for Causal Inference and Machine Learning(转)
Targeted learning methods build machine-learning-based estimators of parameters defined as features ...
- Chapter 7 Confounding
目录 7.1 The structure of confounding Confounding and exchangeability Confounding and the backdoor cri ...
- Chapter 2 Randomized Experiments
目录 概 2.1 Randomization 2.2 Conditional randomization 2.3 Standardization 2.4 Inverse probability wei ...
- 【统计】Causal Inference
[统计]Causal Inference 原文传送门 http://www.stat.cmu.edu/~larry/=sml/Causation.pdf 过程 一.Prediction 和 causa ...
- Causal Inference
目录 Standardization 非参数情况 Censoring 参数模型 Time-varying 静态 IP weighting 无参数 Censoring 参数模型 censoring 条件 ...
- Chapter 22 Target Trial Emulation
目录 22.1 The target trial 22.2 Causal effects in randomized trails 22.3 Causal effects in observation ...
- Chapter 21 G-Methods for Time-Varying Treatments
目录 21.1 The g-formula for time-varying treatments 21.2 IP weighting for time-varying treatments 21.3 ...
随机推荐
- web自动化,selenium环境配置
1,首先我们需要在python编译器中添加selenium插件,我用的是pycharm 点击下方的Terminal,然后在命令行输入: pip install selenium 也可以在设置里面手动添 ...
- 静态库动态库的编译、链接, binutils工具集, 代码段\数据段\bss段解释
#1. 如何使用静态库 制作静态库 (1)gcc *.c -c -I../include得到o文件 (2) ar rcs libMyTest.a *.o 将所有.o文件打包为静态库,r将文件插入静态库 ...
- 【leetcode】1217. Minimum Cost to Move Chips to The Same Position
We have n chips, where the position of the ith chip is position[i]. We need to move all the chips to ...
- redis 之 哨兵
#:编译安装redis4.0 [root@master ~]# tar xf redis-4.0.14.tar.gz [root@master ~]# cd redis-4.0.14/ [root@m ...
- Docker 安装 Oracle12c
为选定需要pull到系统中的数据库镜像 # docker pull sath89/oracle-12c --------sath89/oracle-12c为选定需要pull到系统中的数据库镜像 doc ...
- 聊聊 SpringBoot 中的两种占位符:@*@ 和 ${*}
前言 在 SpringBoot 项目中,我们经常会使用两种占位符(有时候还会混用),它们分别是: @*@ ${*} 如果我们上网搜索「SpringBoot 的占位符 @」,大部分答案会告诉你,Spri ...
- 三维引擎导入obj模型不可见总结
最近有客户试用我们的三维平台,在导入模型的时候,会出现模型全黑和不可见的情况.上一篇文章说了全黑的情况.此文说下不可见的情况. 经过测试,发现可能有如下两种情况. 导入的模型不在镜头视野内 导入的模型 ...
- 【Python机器学习实战】聚类算法(2)——层次聚类(HAC)和DBSCAN
层次聚类和DBSCAN 前面说到K-means聚类算法,K-Means聚类是一种分散性聚类算法,本节主要是基于数据结构的聚类算法--层次聚类和基于密度的聚类算法--DBSCAN两种算法. 1.层次聚类 ...
- Azure Virtual Netwok(二)配置 ExpressRoute 虚拟网络网关
一,引言 我们可以使用 ExpressRoute 可通过连接服务提供商所提供的专用连接,将本地网络扩展到 Microsoft Cloud,实现了网络的混合连接.使用 ExpressRoute 可与 M ...
- [BUUCTF]REVERSE——内涵的软件
内涵的软件 附件 例行检查,32位程序 32位ida载入,shift+f12检索程序里的字符串 看到一个很像flag的字符串,拿去尝试一下,成功 flag{49d3c93df25caad8123213 ...