Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

A: intervention, exposure, treatment

consistency: \(Y=Y^A\) when A observed.

1.1 Individual casual effects

假设我们要探究变量A与变量Y的关系, 在设定\(A=a\)的情况下, Y一致对应有\(Y^{a}\).

倘若A是二元的, 即\(\{0, 1\}\), 则有相应的\(Y^0, Y^1\).

则对于某个个体来讲, A对于Y有casual effect, 若\(Y^0 \not = Y^1\).

举个例子来讲, 给宙斯后面来一棍子(A=1), 宙斯是否会晕\(Y^1=0\) or \(Y^1 =1\), 或者啥也不做也就是\(A=0\), 宙斯的状态\(Y^0\).

当\(Y^1 \not = Y^0\) 的时候, 我们可以判断, 是否给宙斯来一棍对于宙斯下一刻会不会晕有casual effect, 反之就是没有.

1.2 Average casual effects

刚刚是针对个体的causal effect 的定义, 接下来是average casual effect的概念.

实际上, 就是针对一族个体的集合, 探究操作A对于所关心的Y的是否存在影响.

实际上, 就是判断

\[\mathbb{E} [Y^a],
\]

的关系, 对于上面的二元的例子, 就是判断

\[\mathbb{E} [Y^0] == \mathbb{E}[Y^1],
\]

更进一步的, 由于\(Y\)本身也是二元的\(\{0, 1 \}\), 所以可以进一步简化为

\[\mathrm{Pr}[Y^0=1] == \mathrm{Pr}[Y^1 = 1].
\]

1.5 Causation versus association

我们可以知道, \(Y=Y^a, \: if \: A=a\), 更精准的

\[\mathrm{Pr}(Y|A=a) = \mathrm{Pr}(Y^a|A=a),
\]

这是因果推断里很重要的一致性(consistency)的概念, 或许把它作为一个假设更为合理.

要知道, 我们在实际计算causal effects 的时候用到的是边际概率分布\(\mathrm{Pr}(Y^a)\).

观察可知, 当\(A, Y^a\)相互独立的时候, 我们可以得到

\[\mathrm{Pr}(Y^a) = \mathrm{Pr}(Y^a| A=a),
\]

此时causation 和 association 便是一致的了.

association 可以理解为

\[\mathbb{E}[Y|A] = \mathbb{E}[Y^A|A],
\]

与causation非常类似.

想要区分二者的区别, 还是得看原文, 从例子的角度出发, 否者还是难以掌握.

一言以蔽之, association, 即条件概率, 实际上分析的是某一个特定人群执行某些操作的结果, 而causation则是希望在一个更大的范围内, 一视同仁的判断概操作对这些人的影响, 忽略这特定人群的某些特定性质的影响.

Chapter 1 A Definition of Causal Effect的更多相关文章

  1. Chapter 6 Graphical Representation of Causal Effects

    目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...

  2. Chapter 4 Effect Modification

    目录 4.1 Definition of effect modification 4.2 Stratification to identify effect modification 4.3 Why ...

  3. Targeted Learning R Packages for Causal Inference and Machine Learning(转)

    Targeted learning methods build machine-learning-based estimators of parameters defined as features ...

  4. Chapter 7 Confounding

    目录 7.1 The structure of confounding Confounding and exchangeability Confounding and the backdoor cri ...

  5. Chapter 2 Randomized Experiments

    目录 概 2.1 Randomization 2.2 Conditional randomization 2.3 Standardization 2.4 Inverse probability wei ...

  6. 【统计】Causal Inference

    [统计]Causal Inference 原文传送门 http://www.stat.cmu.edu/~larry/=sml/Causation.pdf 过程 一.Prediction 和 causa ...

  7. Causal Inference

    目录 Standardization 非参数情况 Censoring 参数模型 Time-varying 静态 IP weighting 无参数 Censoring 参数模型 censoring 条件 ...

  8. Chapter 22 Target Trial Emulation

    目录 22.1 The target trial 22.2 Causal effects in randomized trails 22.3 Causal effects in observation ...

  9. Chapter 21 G-Methods for Time-Varying Treatments

    目录 21.1 The g-formula for time-varying treatments 21.2 IP weighting for time-varying treatments 21.3 ...

随机推荐

  1. web自动化,selenium环境配置

    1,首先我们需要在python编译器中添加selenium插件,我用的是pycharm 点击下方的Terminal,然后在命令行输入: pip install selenium 也可以在设置里面手动添 ...

  2. 静态库动态库的编译、链接, binutils工具集, 代码段\数据段\bss段解释

    #1. 如何使用静态库 制作静态库 (1)gcc *.c -c -I../include得到o文件 (2) ar rcs libMyTest.a *.o 将所有.o文件打包为静态库,r将文件插入静态库 ...

  3. 【leetcode】1217. Minimum Cost to Move Chips to The Same Position

    We have n chips, where the position of the ith chip is position[i]. We need to move all the chips to ...

  4. redis 之 哨兵

    #:编译安装redis4.0 [root@master ~]# tar xf redis-4.0.14.tar.gz [root@master ~]# cd redis-4.0.14/ [root@m ...

  5. Docker 安装 Oracle12c

    为选定需要pull到系统中的数据库镜像 # docker pull sath89/oracle-12c --------sath89/oracle-12c为选定需要pull到系统中的数据库镜像 doc ...

  6. 聊聊 SpringBoot 中的两种占位符:@*@ 和 ${*}

    前言 在 SpringBoot 项目中,我们经常会使用两种占位符(有时候还会混用),它们分别是: @*@ ${*} 如果我们上网搜索「SpringBoot 的占位符 @」,大部分答案会告诉你,Spri ...

  7. 三维引擎导入obj模型不可见总结

    最近有客户试用我们的三维平台,在导入模型的时候,会出现模型全黑和不可见的情况.上一篇文章说了全黑的情况.此文说下不可见的情况. 经过测试,发现可能有如下两种情况. 导入的模型不在镜头视野内 导入的模型 ...

  8. 【Python机器学习实战】聚类算法(2)——层次聚类(HAC)和DBSCAN

    层次聚类和DBSCAN 前面说到K-means聚类算法,K-Means聚类是一种分散性聚类算法,本节主要是基于数据结构的聚类算法--层次聚类和基于密度的聚类算法--DBSCAN两种算法. 1.层次聚类 ...

  9. Azure Virtual Netwok(二)配置 ExpressRoute 虚拟网络网关

    一,引言 我们可以使用 ExpressRoute 可通过连接服务提供商所提供的专用连接,将本地网络扩展到 Microsoft Cloud,实现了网络的混合连接.使用 ExpressRoute 可与 M ...

  10. [BUUCTF]REVERSE——内涵的软件

    内涵的软件 附件 例行检查,32位程序 32位ida载入,shift+f12检索程序里的字符串 看到一个很像flag的字符串,拿去尝试一下,成功 flag{49d3c93df25caad8123213 ...