Chapter 1 A Definition of Causal Effect
A: intervention, exposure, treatment
consistency: \(Y=Y^A\) when A observed.
1.1 Individual casual effects
假设我们要探究变量A与变量Y的关系, 在设定\(A=a\)的情况下, Y一致对应有\(Y^{a}\).
倘若A是二元的, 即\(\{0, 1\}\), 则有相应的\(Y^0, Y^1\).
则对于某个个体来讲, A对于Y有casual effect, 若\(Y^0 \not = Y^1\).
举个例子来讲, 给宙斯后面来一棍子(A=1), 宙斯是否会晕\(Y^1=0\) or \(Y^1 =1\), 或者啥也不做也就是\(A=0\), 宙斯的状态\(Y^0\).
当\(Y^1 \not = Y^0\) 的时候, 我们可以判断, 是否给宙斯来一棍对于宙斯下一刻会不会晕有casual effect, 反之就是没有.
1.2 Average casual effects
刚刚是针对个体的causal effect 的定义, 接下来是average casual effect的概念.
实际上, 就是针对一族个体的集合, 探究操作A对于所关心的Y的是否存在影响.
实际上, 就是判断
\]
的关系, 对于上面的二元的例子, 就是判断
\]
更进一步的, 由于\(Y\)本身也是二元的\(\{0, 1 \}\), 所以可以进一步简化为
\]
1.5 Causation versus association
我们可以知道, \(Y=Y^a, \: if \: A=a\), 更精准的
\]
这是因果推断里很重要的一致性(consistency)的概念, 或许把它作为一个假设更为合理.
要知道, 我们在实际计算causal effects 的时候用到的是边际概率分布\(\mathrm{Pr}(Y^a)\).
观察可知, 当\(A, Y^a\)相互独立的时候, 我们可以得到
\]
此时causation 和 association 便是一致的了.
association 可以理解为
\]
与causation非常类似.
想要区分二者的区别, 还是得看原文, 从例子的角度出发, 否者还是难以掌握.
一言以蔽之, association, 即条件概率, 实际上分析的是某一个特定人群执行某些操作的结果, 而causation则是希望在一个更大的范围内, 一视同仁的判断概操作对这些人的影响, 忽略这特定人群的某些特定性质的影响.
Chapter 1 A Definition of Causal Effect的更多相关文章
- Chapter 6 Graphical Representation of Causal Effects
目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...
- Chapter 4 Effect Modification
目录 4.1 Definition of effect modification 4.2 Stratification to identify effect modification 4.3 Why ...
- Targeted Learning R Packages for Causal Inference and Machine Learning(转)
Targeted learning methods build machine-learning-based estimators of parameters defined as features ...
- Chapter 7 Confounding
目录 7.1 The structure of confounding Confounding and exchangeability Confounding and the backdoor cri ...
- Chapter 2 Randomized Experiments
目录 概 2.1 Randomization 2.2 Conditional randomization 2.3 Standardization 2.4 Inverse probability wei ...
- 【统计】Causal Inference
[统计]Causal Inference 原文传送门 http://www.stat.cmu.edu/~larry/=sml/Causation.pdf 过程 一.Prediction 和 causa ...
- Causal Inference
目录 Standardization 非参数情况 Censoring 参数模型 Time-varying 静态 IP weighting 无参数 Censoring 参数模型 censoring 条件 ...
- Chapter 22 Target Trial Emulation
目录 22.1 The target trial 22.2 Causal effects in randomized trails 22.3 Causal effects in observation ...
- Chapter 21 G-Methods for Time-Varying Treatments
目录 21.1 The g-formula for time-varying treatments 21.2 IP weighting for time-varying treatments 21.3 ...
随机推荐
- 学习java 7.16
学习内容: 线程安全的类 Lock锁 生产者消费者模式 Object类的等待唤醒方法 明天内容: 网络编程 通信程序 遇到问题: 无
- Shell学习(二)——变量和基本数据类型
参考博客: [1]LinuxShell脚本--变量和数据类型 [2]shell只读变量删除 一.变量 定义变量的语法 定义变量时,变量名和变量值之间使用"="分隔,并且等号两边不能 ...
- LeetCode33题——搜索旋转排序数组
1.题目描述 假设按照升序排序的数组在预先未知的某个点上进行了旋转. ( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] ). 搜索一个给定的目标值,如果数组中存 ...
- @Data 注解引出的 lombok
今天在看代码的时候, 看到了这个注解, 之前都没有见过, 所以就查了下, 发现还是个不错的注解, 可以让代码更加简洁. 这个注解来自于 lombok,lombok 能够减少大量的模板代码,减少了在使用 ...
- linux下怎么查看某个命令属于哪个包
# yum whatprovides */ip 或者 # yum provides */ip 即可
- 【Java多线程】Java 中断
如何安全的结束一个正在运行的线程 java.lang.Thread类包含了一些常用的方法,如:start(), stop(), stop(Throwable) ,suspend(), destroy( ...
- JSP中声明变量、方法
在JSP页面中声明局部变量,全局变量,方法等 代码示例: <%@ page language="java" contentType="text/html; char ...
- SharedWorker实现多标签页联动计时器
web workers对于每个前端开发者并不陌生,在mdn中的定义:Web Worker为Web内容在后台线程中运行脚本提供了一种简单的方法.线程可以执行任务而不干扰用户界面.此外,他们可以使用XML ...
- Linux下安装Calibre
目录 一.介绍 二.安装 三.测试 四.报错处理 一.介绍 Calibre是基于python的电子书制作软件,可导出PDF.EPUB.MOBI.Word格式电子书. 二.安装 yum -y insta ...
- react功能实现-组件创建
这里主要从两个角度来分析创建一个组件需要怎么做,一个是元素,一个是数据.整理向,大量借鉴,非原创. 1.渲染组件. 我们先明确一点,所有的元素都必须通过render方法来输出渲染.所有,每个组件类最终 ...