Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

A: intervention, exposure, treatment

consistency: \(Y=Y^A\) when A observed.

1.1 Individual casual effects

假设我们要探究变量A与变量Y的关系, 在设定\(A=a\)的情况下, Y一致对应有\(Y^{a}\).

倘若A是二元的, 即\(\{0, 1\}\), 则有相应的\(Y^0, Y^1\).

则对于某个个体来讲, A对于Y有casual effect, 若\(Y^0 \not = Y^1\).

举个例子来讲, 给宙斯后面来一棍子(A=1), 宙斯是否会晕\(Y^1=0\) or \(Y^1 =1\), 或者啥也不做也就是\(A=0\), 宙斯的状态\(Y^0\).

当\(Y^1 \not = Y^0\) 的时候, 我们可以判断, 是否给宙斯来一棍对于宙斯下一刻会不会晕有casual effect, 反之就是没有.

1.2 Average casual effects

刚刚是针对个体的causal effect 的定义, 接下来是average casual effect的概念.

实际上, 就是针对一族个体的集合, 探究操作A对于所关心的Y的是否存在影响.

实际上, 就是判断

\[\mathbb{E} [Y^a],
\]

的关系, 对于上面的二元的例子, 就是判断

\[\mathbb{E} [Y^0] == \mathbb{E}[Y^1],
\]

更进一步的, 由于\(Y\)本身也是二元的\(\{0, 1 \}\), 所以可以进一步简化为

\[\mathrm{Pr}[Y^0=1] == \mathrm{Pr}[Y^1 = 1].
\]

1.5 Causation versus association

我们可以知道, \(Y=Y^a, \: if \: A=a\), 更精准的

\[\mathrm{Pr}(Y|A=a) = \mathrm{Pr}(Y^a|A=a),
\]

这是因果推断里很重要的一致性(consistency)的概念, 或许把它作为一个假设更为合理.

要知道, 我们在实际计算causal effects 的时候用到的是边际概率分布\(\mathrm{Pr}(Y^a)\).

观察可知, 当\(A, Y^a\)相互独立的时候, 我们可以得到

\[\mathrm{Pr}(Y^a) = \mathrm{Pr}(Y^a| A=a),
\]

此时causation 和 association 便是一致的了.

association 可以理解为

\[\mathbb{E}[Y|A] = \mathbb{E}[Y^A|A],
\]

与causation非常类似.

想要区分二者的区别, 还是得看原文, 从例子的角度出发, 否者还是难以掌握.

一言以蔽之, association, 即条件概率, 实际上分析的是某一个特定人群执行某些操作的结果, 而causation则是希望在一个更大的范围内, 一视同仁的判断概操作对这些人的影响, 忽略这特定人群的某些特定性质的影响.

Chapter 1 A Definition of Causal Effect的更多相关文章

  1. Chapter 6 Graphical Representation of Causal Effects

    目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...

  2. Chapter 4 Effect Modification

    目录 4.1 Definition of effect modification 4.2 Stratification to identify effect modification 4.3 Why ...

  3. Targeted Learning R Packages for Causal Inference and Machine Learning(转)

    Targeted learning methods build machine-learning-based estimators of parameters defined as features ...

  4. Chapter 7 Confounding

    目录 7.1 The structure of confounding Confounding and exchangeability Confounding and the backdoor cri ...

  5. Chapter 2 Randomized Experiments

    目录 概 2.1 Randomization 2.2 Conditional randomization 2.3 Standardization 2.4 Inverse probability wei ...

  6. 【统计】Causal Inference

    [统计]Causal Inference 原文传送门 http://www.stat.cmu.edu/~larry/=sml/Causation.pdf 过程 一.Prediction 和 causa ...

  7. Causal Inference

    目录 Standardization 非参数情况 Censoring 参数模型 Time-varying 静态 IP weighting 无参数 Censoring 参数模型 censoring 条件 ...

  8. Chapter 22 Target Trial Emulation

    目录 22.1 The target trial 22.2 Causal effects in randomized trails 22.3 Causal effects in observation ...

  9. Chapter 21 G-Methods for Time-Varying Treatments

    目录 21.1 The g-formula for time-varying treatments 21.2 IP weighting for time-varying treatments 21.3 ...

随机推荐

  1. 学习java 7.16

    学习内容: 线程安全的类 Lock锁 生产者消费者模式 Object类的等待唤醒方法 明天内容: 网络编程 通信程序 遇到问题: 无

  2. Shell学习(二)——变量和基本数据类型

    参考博客: [1]LinuxShell脚本--变量和数据类型 [2]shell只读变量删除 一.变量 定义变量的语法 定义变量时,变量名和变量值之间使用"="分隔,并且等号两边不能 ...

  3. LeetCode33题——搜索旋转排序数组

    1.题目描述 假设按照升序排序的数组在预先未知的某个点上进行了旋转. ( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] ). 搜索一个给定的目标值,如果数组中存 ...

  4. @Data 注解引出的 lombok

    今天在看代码的时候, 看到了这个注解, 之前都没有见过, 所以就查了下, 发现还是个不错的注解, 可以让代码更加简洁. 这个注解来自于 lombok,lombok 能够减少大量的模板代码,减少了在使用 ...

  5. linux下怎么查看某个命令属于哪个包

    # yum whatprovides */ip  或者 # yum provides */ip 即可

  6. 【Java多线程】Java 中断

    如何安全的结束一个正在运行的线程 java.lang.Thread类包含了一些常用的方法,如:start(), stop(), stop(Throwable) ,suspend(), destroy( ...

  7. JSP中声明变量、方法

    在JSP页面中声明局部变量,全局变量,方法等 代码示例: <%@ page language="java" contentType="text/html; char ...

  8. SharedWorker实现多标签页联动计时器

    web workers对于每个前端开发者并不陌生,在mdn中的定义:Web Worker为Web内容在后台线程中运行脚本提供了一种简单的方法.线程可以执行任务而不干扰用户界面.此外,他们可以使用XML ...

  9. Linux下安装Calibre

    目录 一.介绍 二.安装 三.测试 四.报错处理 一.介绍 Calibre是基于python的电子书制作软件,可导出PDF.EPUB.MOBI.Word格式电子书. 二.安装 yum -y insta ...

  10. react功能实现-组件创建

    这里主要从两个角度来分析创建一个组件需要怎么做,一个是元素,一个是数据.整理向,大量借鉴,非原创. 1.渲染组件. 我们先明确一点,所有的元素都必须通过render方法来输出渲染.所有,每个组件类最终 ...