Proximal Algorithms 7 Examples and Applications
本节介绍一些例子.
LASSO
考虑如下问题:
\]
其中\(x \in \mathbb{R}^n, A \in \mathbb{R}^{m\times n }\).
proximal gradient method
proximal gradient method 是:
\]
令\(f(x)=(1/2)\|Ax-b\|_2^2, g(x)=\gamma \|x\|_1\), 则
\]
其中\(S_{\gamma}(x)\)是soft-thresholding.
ADMM
很自然的方法,不提了.
矩阵分解
一般的矩阵分解问题如下:

其中\(X_1, \ldots, X_N \in \mathbb{R}^{m\times n}\)为变量,而\(A \in \mathbb{R}^{m\times n }\)为数据矩阵.
不同的惩罚项\(\varphi\)会带来不同的效果.
- \(\varphi(X)=\|X\|_F^2\), 这时,矩阵元素往往都比较接近且小
- \(\varphi(X)=\|X\|_1\), 这会导致稀疏化
- \(\varphi(X) = \sum_j \|x_j\|_2\), 其中\(x_j\)是\(X\)的第\(j\)列, 这会导致列稀疏?
其他的看文章吧.
ADMM算法
令
\]
其中\(X = (X_1, \ldots, X_N)\), 并且:
\]
根据之前的分析,容易知道:
\]
其中\(\bar{X}\)是\(X_1, \ldots, X_N\)的各元素的平均.
最后算法总结为:

多时期股票交易
其问题是:
\]
其中\(x_t, t=1,\ldots, T\)表示第\(t\)个时期所保持的股份,期权,而\(f_t\)则表示对应的风险,\(g_t\)表示第\(t\)个时期交易所需要耗费的资源.
考虑如下分割:
\]
其中\(X=[x_1, \ldots, x_T]\in\mathbb{R}^{n \times T}\).
随机最优
为如下问题:
\]
其中\(\pi \in \mathbb{R}_+^K\)是一个概率分布,满足\(1^T\pi=1\).
利用第5节的知识,将此问题化为:
s.t. \quad x^{(1)}=\ldots=x^{(K)}.
\]
再利用ADMM就可以了.
Robust and risk-averse optimization
鲁棒最优,特别的, 最小化最大风险:
\]
更一般的:
\]
其中\(\varphi\)为非降凸函数.
method
将上面的问题转化为:

将

视作\(f\)
而
作为\(g\),再利用ADMM求解即可.
Proximal Algorithms 7 Examples and Applications的更多相关文章
- Proximal Algorithms
1. Introduction Much like Newton's method is a standard tool for solving unconstrained smooth minimi ...
- Proximal Algorithms 6 Evaluating Proximal Operators
目录 一般方法 二次函数 平滑函数 标量函数 一般的标量函数 多边形 对偶 仿射集合 半平面 Box Simplex Cones 二阶锥 半正定锥 指数锥 Pointwise maximum and ...
- Proximal Algorithms 5 Parallel and Distributed Algorithms
目录 问题的结构 consensus 更为一般的情况 Exchange 问题 Global exchange 更为一般的情况 Allocation Proximal Algorithms 这一节,介绍 ...
- Proximal Algorithms 4 Algorithms
目录 Proximal minimization 解释 Gradient flow 解释1 最大最小算法 不动点解释 Forward-backward 迭代解释 加速 proximal gradien ...
- Proximal Algorithms 3 Interpretation
目录 Moreau-Yosida regularization 与次梯度的联系 改进的梯度路径 信赖域问题 Proximal Algorithms 这一节,作者总结了一些关于proximal的一些直观 ...
- Proximal Algorithms 1 介绍
目录 定义 解释 图形解释 梯度解释 一个简单的例子 Proximal Algorithms 定义 令\(f: \mathrm{R}^n \rightarrow \mathrm{R} \cup \{+ ...
- Proximal Algorithms 2 Properties
目录 可分和 基本的运算 不动点 fixed points Moreau decomposition 可分和 如果\(f\)可分为俩个变量:\(f(x, y)=\varphi(x) + \psi(y) ...
- OpenCASCADE Hidden Line Removal
OpenCASCADE Hidden Line Removal eryar@163.com Abstract. To provide the precision required in industr ...
- 计算机视觉code与软件
Research Code A rational methodology for lossy compression - REWIC is a software-based implementatio ...
随机推荐
- go 函数进阶
目录 回调函数和闭包 高阶函数示例 回调函数(sort.SliceStable) 闭包 最佳闭包实例 回调函数和闭包 当函数具备以下两种特性的时候,就可以称之为高阶函数(high order func ...
- CentOS7 搭建maven私服Nexus
下载解压 官网https://www.sonatype.com/download-oss-sonatype 下载页面 https://help.sonatype.com/repomanager2/do ...
- c学习 - 第七章:数组
7.3.6 字符串处理函数 (1).puts(字符数组) 字符串输出到终端 (2).gets(字符数组) 从标准输入获取字符串(包括空格) (3).strcat(字符数组1,字符数组2) 连接两个字符 ...
- Vue API 4 (过渡和动画)
transition name 用于自动生成 CSS 过渡类名.例如:name: fade 将自动拓展为 .fade-enter ,.fade-enter-active等.默认类名为 "v& ...
- redis的总结笔记
# Redis 1. 概念: redis是一款高性能的NOSQL系列的非关系型数据库 1.1.什么是NOSQL NoSQL(NoSQL = Not Only ...
- ABP.VNext-模块
一.什么是ABP.Vnext? ABP.Vnext是一个基于Asp.Net Core Web应用程序框架.主要目的是用来快速开发Web应用, ABP.Vnext不仅提供完整Web应用程序开发模板,而且 ...
- ASP.NET Core中使用漏桶算法限流
漏桶算法是限流的四大主流算法之一,其应用场景各种资料中介绍的不多,一般都是说应用在网络流量控制中.这里举两个例子: 1.目前家庭上网都会限制一个固定的带宽,比如100M.200M等,一栋楼有很多的用户 ...
- Identity Server 4 从入门到落地(十)—— 编写可配置的客户端和Web Api
前面的部分: Identity Server 4 从入门到落地(一)-- 从IdentityServer4.Admin开始 Identity Server 4 从入门到落地(二)-- 理解授权码模式 ...
- 扬我国威,来自清华的开源项目火爆Github
前几天TJ君跟大家分享了几个有趣的Github项目(加密解密.食谱.新冠序列,各种有趣的开源项目Github上都有),其中呢,有不少是来自斯坦福大学的项目,当时TJ君就不由得想,什么时候能看到的项目都 ...
- dart系列之:安全看我,dart中的安全特性null safety
目录 简介 Non-nullable类型 Nullable List Of Strings 和 List Of Nullable Strings !操作符 late关键字 总结 简介 在Dart 2. ...