Proximal Algorithms 7 Examples and Applications
本节介绍一些例子.
LASSO
考虑如下问题:
\]
其中\(x \in \mathbb{R}^n, A \in \mathbb{R}^{m\times n }\).
proximal gradient method
proximal gradient method 是:
\]
令\(f(x)=(1/2)\|Ax-b\|_2^2, g(x)=\gamma \|x\|_1\), 则
\]
其中\(S_{\gamma}(x)\)是soft-thresholding.
ADMM
很自然的方法,不提了.
矩阵分解
一般的矩阵分解问题如下:
其中\(X_1, \ldots, X_N \in \mathbb{R}^{m\times n}\)为变量,而\(A \in \mathbb{R}^{m\times n }\)为数据矩阵.
不同的惩罚项\(\varphi\)会带来不同的效果.
- \(\varphi(X)=\|X\|_F^2\), 这时,矩阵元素往往都比较接近且小
- \(\varphi(X)=\|X\|_1\), 这会导致稀疏化
- \(\varphi(X) = \sum_j \|x_j\|_2\), 其中\(x_j\)是\(X\)的第\(j\)列, 这会导致列稀疏?
其他的看文章吧.
ADMM算法
令
\]
其中\(X = (X_1, \ldots, X_N)\), 并且:
\]
根据之前的分析,容易知道:
\]
其中\(\bar{X}\)是\(X_1, \ldots, X_N\)的各元素的平均.
最后算法总结为:
多时期股票交易
其问题是:
\]
其中\(x_t, t=1,\ldots, T\)表示第\(t\)个时期所保持的股份,期权,而\(f_t\)则表示对应的风险,\(g_t\)表示第\(t\)个时期交易所需要耗费的资源.
考虑如下分割:
\]
其中\(X=[x_1, \ldots, x_T]\in\mathbb{R}^{n \times T}\).
随机最优
为如下问题:
\]
其中\(\pi \in \mathbb{R}_+^K\)是一个概率分布,满足\(1^T\pi=1\).
利用第5节的知识,将此问题化为:
s.t. \quad x^{(1)}=\ldots=x^{(K)}.
\]
再利用ADMM就可以了.
Robust and risk-averse optimization
鲁棒最优,特别的, 最小化最大风险:
\]
更一般的:
\]
其中\(\varphi\)为非降凸函数.
method
将上面的问题转化为:
将
视作\(f\)
而
作为\(g\),再利用ADMM求解即可.
Proximal Algorithms 7 Examples and Applications的更多相关文章
- Proximal Algorithms
1. Introduction Much like Newton's method is a standard tool for solving unconstrained smooth minimi ...
- Proximal Algorithms 6 Evaluating Proximal Operators
目录 一般方法 二次函数 平滑函数 标量函数 一般的标量函数 多边形 对偶 仿射集合 半平面 Box Simplex Cones 二阶锥 半正定锥 指数锥 Pointwise maximum and ...
- Proximal Algorithms 5 Parallel and Distributed Algorithms
目录 问题的结构 consensus 更为一般的情况 Exchange 问题 Global exchange 更为一般的情况 Allocation Proximal Algorithms 这一节,介绍 ...
- Proximal Algorithms 4 Algorithms
目录 Proximal minimization 解释 Gradient flow 解释1 最大最小算法 不动点解释 Forward-backward 迭代解释 加速 proximal gradien ...
- Proximal Algorithms 3 Interpretation
目录 Moreau-Yosida regularization 与次梯度的联系 改进的梯度路径 信赖域问题 Proximal Algorithms 这一节,作者总结了一些关于proximal的一些直观 ...
- Proximal Algorithms 1 介绍
目录 定义 解释 图形解释 梯度解释 一个简单的例子 Proximal Algorithms 定义 令\(f: \mathrm{R}^n \rightarrow \mathrm{R} \cup \{+ ...
- Proximal Algorithms 2 Properties
目录 可分和 基本的运算 不动点 fixed points Moreau decomposition 可分和 如果\(f\)可分为俩个变量:\(f(x, y)=\varphi(x) + \psi(y) ...
- OpenCASCADE Hidden Line Removal
OpenCASCADE Hidden Line Removal eryar@163.com Abstract. To provide the precision required in industr ...
- 计算机视觉code与软件
Research Code A rational methodology for lossy compression - REWIC is a software-based implementatio ...
随机推荐
- day9 文件处理
day09 文件处理 一.注册与登录功能 username = input('请输入您的密码:').strip() password = input('请输入您的密码:').strip() f = o ...
- 13. 搭建arm-linux-gcc交叉编译环境
1.下载工具并解压 下载路径 http://www.arm9.net/download.asp 将 arm-linux-gcc-4.5.1-v6-vfp-20120301.tgz 拷贝到 Linux ...
- 零基础学习java------21---------动态代理,java8新特性(lambda, stream,DateApi)
1. 动态代理 在一个方法前后加内容,最简单直观的方法就是直接在代码上加内容(如数据库中的事务),但这样写不够灵活,并且代码可维护性差,所以就需要引入动态代理 1.1 静态代理实现 在讲动态代理之前, ...
- Oracle—表、约束、索引、表空间、分区、序列、统计信息
表.约束.索引.表空间.分区.序列.统计信息 一.表及其操作 1.创建表 create table 表名 ( 字段名1 字段类型 默认值 是否为空 , 字段名2 字段类型 默认值 是否为空, 字段名3 ...
- hadoop accesscontrolException
DFS loaction: /tmp 文件下的 hadoop-haoop/mapred/system报 AccessControlException. 解决: bin/hadoop fs -chmod ...
- 用户创建firefox配置文件
1.打开cmd进放 firefox.exe所在的目录 如:D:\>cd D:\Mozilla Firefox 2.运行如命令:D:\Mozilla Firefox>firefox.exe ...
- 【Spring Framework】Spring入门教程(二)基于xml配置对象容器
基于xml配置对象容器--xml 标签说明 alias标签 作用:为已配置的bean设置别名 --applicationContext.xml配置文件 <?xml version="1 ...
- Linux提取命令grep 有这一篇就够了
grep作为linux中使用频率非常高的一个命令,和cut命令一样都是管道命令中的一员.并且其功能也是对一行数据进行分析,从分析的数据中取出我们想要的数据.也就是相当于一个检索的功能.当然了,grep ...
- Mongodb单点部署
目录 一.依赖和环境 二.部署 三.启动和测试 一.依赖和环境 centos7.2,4核cpu, 8G内存 100G硬盘 版本:3.4.7社区版本 端口:27017 数据目录:/usr/local/m ...
- Tableau如何绘制堆叠柱状图
一.将类别,子类别拖拽至列上 二.将度量值拖拽至行上 三.将度量名称拖拽至筛选器上,右键度量名称,编辑筛选器,选择销售额 四.将事先准备的目标销售额拖拽至度量值 五.将度量名称拖拽至标记,分别以颜色和 ...