本节介绍一些例子.

LASSO

考虑如下问题:

\[\min \quad (1/2)\|Ax-b\|_2^2 + \gamma\|x\|_1,
\]

其中\(x \in \mathbb{R}^n, A \in \mathbb{R}^{m\times n }\).

proximal gradient method

proximal gradient method 是:

\[x^{k+1} := \mathbf{prox}_{\lambda g}(x^k - \lambda \nabla f(x^k))
\]

令\(f(x)=(1/2)\|Ax-b\|_2^2, g(x)=\gamma \|x\|_1\), 则

\[\nabla f(x) = A^T(Ax-b), \quad \mathbf{prox}_{\gamma g}(x)=S_{\gamma}(x),
\]

其中\(S_{\gamma}(x)\)是soft-thresholding.

ADMM

很自然的方法,不提了.

矩阵分解

一般的矩阵分解问题如下:



其中\(X_1, \ldots, X_N \in \mathbb{R}^{m\times n}\)为变量,而\(A \in \mathbb{R}^{m\times n }\)为数据矩阵.

不同的惩罚项\(\varphi\)会带来不同的效果.

  • \(\varphi(X)=\|X\|_F^2\), 这时,矩阵元素往往都比较接近且小
  • \(\varphi(X)=\|X\|_1\), 这会导致稀疏化
  • \(\varphi(X) = \sum_j \|x_j\|_2\), 其中\(x_j\)是\(X\)的第\(j\)列, 这会导致列稀疏?

其他的看文章吧.

ADMM算法

\[f(x) = \sum_{i=1}^N \varphi_i (X_i), \quad g(X)=I_{\mathcal{C}}(X),
\]

其中\(X = (X_1, \ldots, X_N)\), 并且:

\[\mathcal{C} = \{(X_1, \ldots, X_N| X_1 + \ldots + X_N=A\}.
\]

根据之前的分析,容易知道:

\[\Pi_{\mathcal{C}}=(X_1, \ldots, X_N)-\bar{X}+(1/N)A,
\]

其中\(\bar{X}\)是\(X_1, \ldots, X_N\)的各元素的平均.

最后算法总结为:

多时期股票交易

其问题是:

\[\min \quad \sum_{t=1}^T f_t(x_t) + \sum_{t=1}^T g_t (x_t - x_{t-1}),
\]

其中\(x_t, t=1,\ldots, T\)表示第\(t\)个时期所保持的股份,期权,而\(f_t\)则表示对应的风险,\(g_t\)表示第\(t\)个时期交易所需要耗费的资源.

考虑如下分割:

\[f(X)=\sum_{t=1}^ Tf_t(x_t), \quad g(X)=\sum_{t=1}^T g_t(x_t-x_{t-1}),
\]

其中\(X=[x_1, \ldots, x_T]\in\mathbb{R}^{n \times T}\).

随机最优

为如下问题:

\[\min \quad \sum_{k=1}^K \pi_k f^{(k)} (x),
\]

其中\(\pi \in \mathbb{R}_+^K\)是一个概率分布,满足\(1^T\pi=1\).

利用第5节的知识,将此问题化为:

\[\min \quad \sum_{k=1}^K \pi_k f^{(k)} (x^{(k)}) \\
s.t. \quad x^{(1)}=\ldots=x^{(K)}.
\]

再利用ADMM就可以了.

Robust and risk-averse optimization

鲁棒最优,特别的, 最小化最大风险:

\[\min \quad \max_{k=1, \ldots, K} f^{(k)}(x).
\]

更一般的:

\[\min \quad \varphi(f^{(1)}, \ldots, f^{(K)}(x)),
\]

其中\(\varphi\)为非降凸函数.

method

将上面的问题转化为:





视作\(f\)



作为\(g\),再利用ADMM求解即可.

Proximal Algorithms 7 Examples and Applications的更多相关文章

  1. Proximal Algorithms

    1. Introduction Much like Newton's method is a standard tool for solving unconstrained smooth minimi ...

  2. Proximal Algorithms 6 Evaluating Proximal Operators

    目录 一般方法 二次函数 平滑函数 标量函数 一般的标量函数 多边形 对偶 仿射集合 半平面 Box Simplex Cones 二阶锥 半正定锥 指数锥 Pointwise maximum and ...

  3. Proximal Algorithms 5 Parallel and Distributed Algorithms

    目录 问题的结构 consensus 更为一般的情况 Exchange 问题 Global exchange 更为一般的情况 Allocation Proximal Algorithms 这一节,介绍 ...

  4. Proximal Algorithms 4 Algorithms

    目录 Proximal minimization 解释 Gradient flow 解释1 最大最小算法 不动点解释 Forward-backward 迭代解释 加速 proximal gradien ...

  5. Proximal Algorithms 3 Interpretation

    目录 Moreau-Yosida regularization 与次梯度的联系 改进的梯度路径 信赖域问题 Proximal Algorithms 这一节,作者总结了一些关于proximal的一些直观 ...

  6. Proximal Algorithms 1 介绍

    目录 定义 解释 图形解释 梯度解释 一个简单的例子 Proximal Algorithms 定义 令\(f: \mathrm{R}^n \rightarrow \mathrm{R} \cup \{+ ...

  7. Proximal Algorithms 2 Properties

    目录 可分和 基本的运算 不动点 fixed points Moreau decomposition 可分和 如果\(f\)可分为俩个变量:\(f(x, y)=\varphi(x) + \psi(y) ...

  8. OpenCASCADE Hidden Line Removal

    OpenCASCADE Hidden Line Removal eryar@163.com Abstract. To provide the precision required in industr ...

  9. 计算机视觉code与软件

    Research Code A rational methodology for lossy compression - REWIC is a software-based implementatio ...

随机推荐

  1. go 函数进阶

    目录 回调函数和闭包 高阶函数示例 回调函数(sort.SliceStable) 闭包 最佳闭包实例 回调函数和闭包 当函数具备以下两种特性的时候,就可以称之为高阶函数(high order func ...

  2. CentOS7 搭建maven私服Nexus

    下载解压 官网https://www.sonatype.com/download-oss-sonatype 下载页面 https://help.sonatype.com/repomanager2/do ...

  3. c学习 - 第七章:数组

    7.3.6 字符串处理函数 (1).puts(字符数组) 字符串输出到终端 (2).gets(字符数组) 从标准输入获取字符串(包括空格) (3).strcat(字符数组1,字符数组2) 连接两个字符 ...

  4. Vue API 4 (过渡和动画)

    transition name 用于自动生成 CSS 过渡类名.例如:name: fade 将自动拓展为 .fade-enter ,.fade-enter-active等.默认类名为 "v& ...

  5. redis的总结笔记

    # Redis    1. 概念: redis是一款高性能的NOSQL系列的非关系型数据库        1.1.什么是NOSQL            NoSQL(NoSQL = Not Only ...

  6. ABP.VNext-模块

    一.什么是ABP.Vnext? ABP.Vnext是一个基于Asp.Net Core Web应用程序框架.主要目的是用来快速开发Web应用, ABP.Vnext不仅提供完整Web应用程序开发模板,而且 ...

  7. ASP.NET Core中使用漏桶算法限流

    漏桶算法是限流的四大主流算法之一,其应用场景各种资料中介绍的不多,一般都是说应用在网络流量控制中.这里举两个例子: 1.目前家庭上网都会限制一个固定的带宽,比如100M.200M等,一栋楼有很多的用户 ...

  8. Identity Server 4 从入门到落地(十)—— 编写可配置的客户端和Web Api

    前面的部分: Identity Server 4 从入门到落地(一)-- 从IdentityServer4.Admin开始 Identity Server 4 从入门到落地(二)-- 理解授权码模式 ...

  9. 扬我国威,来自清华的开源项目火爆Github

    前几天TJ君跟大家分享了几个有趣的Github项目(加密解密.食谱.新冠序列,各种有趣的开源项目Github上都有),其中呢,有不少是来自斯坦福大学的项目,当时TJ君就不由得想,什么时候能看到的项目都 ...

  10. dart系列之:安全看我,dart中的安全特性null safety

    目录 简介 Non-nullable类型 Nullable List Of Strings 和 List Of Nullable Strings !操作符 late关键字 总结 简介 在Dart 2. ...