作者:腾讯云流计算 Oceanus 团队

流计算 Oceanus 简介

流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。

本文将为您详细介绍如何使用 Windowing TVF 配合聚合函数,实时调整乱序数据,经过聚合分析后存入 MySQL 中。

操作视频

前置准备

创建流计算 Oceanus 集群

进入 Oceanus 控制台 [1],点击左侧【集群管理】,点击左上方【创建集群】,具体可参考 Oceanus 官方文档 创建独享集群 [2]。

创建消息队列 CKafka

进入 CKafka 控制台 [3],点击左上角【新建】,即可完成 CKafka 的创建,具体可参考 CKafka 创建实例 [4]。

创建 Topic:

进入 CKafka 实例,点击【topic 管理】>【新建】,即可完成 Topic 的创建,具体可参考 CKafka 创建 Topic [5]。

数据准备:

进入同子网的 CVM 下,启动 Kafka 客户端,模拟发送数据,具体操作参见 运行 Kafka 客户端 [6]。

# 启动 Kafka 生产者命令
bash kafka-console-producer.sh --broker-list 10.0.0.29:9092 --topic oceanus_advanced5_input --producer.config ../config/producer.properties
// 按顺序插入如下数据,注意这里数据时间是乱序的
{"order_id":"10000","num":1,"event_time":"2021-12-22 14:29:16"}
{"order_id":"10000","num":1,"event_time":"2021-12-22 14:29:30"}
{"order_id":"10000","num":1,"event_time":"2021-12-22 14:29:50"}
{"order_id":"10000","num":1,"event_time":"2021-12-22 14:29:59"}
{"order_id":"10000","num":1,"event_time":"2021-12-22 14:29:43"}
{"order_id":"10000","num":1,"event_time":"2021-12-22 14:30:09"}
{"order_id":"10000","num":1,"event_time":"2021-12-22 14:30:01"}
{"order_id":"10000","num":1,"event_time":"2021-12-22 14:29:50"}
{"order_id":"10000","num":1,"event_time":"2021-12-22 14:30:15"}
{"order_id":"10000","num":1,"event_time":"2021-12-22 14:30:50"}
{"order_id":"10000","num":1,"event_time":"2021-12-22 14:31:15"}

创建 MySQL 实例

进入 MySQL 控制台 [7],点击【新建】。具体可参考官方文档 创建 MySQL 实例 [8]。

-- 建表语句
CREATE TABLE `oceanus_advanced5_output` (
`window_start` datetime NOT NULL,
`window_end` datetime NOT NULL,
`num` int(11) DEFAULT NULL,
PRIMARY KEY (`window_start`,`window_end`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8

流计算 Oceanus 作业

1. 创建 Source

CREATE TABLE `kafka_json_source_table` (
`order_id` VARCHAR,
`num` INT,
`event_time` TIMESTAMP(3),
-- 根据事件时间 `event_time` 设置 10s 的延迟水印
WATERMARK FOR event_time AS event_time - INTERVAL '10' SECOND
) WITH (
'connector' = 'kafka',
'topic' = 'oceanus_advanced5_input', -- 替换为您要消费的 Topic
'scan.startup.mode' = 'latest-offset', -- 可以是 latest-offset / earliest-offset / specific-offsets / group-offsets / timestamp 的任何一种
'properties.bootstrap.servers' = '10.0.0.29:9092', -- 替换为您的 Kafka 连接地址
'properties.group.id' = 'testGroup', -- 必选参数, 一定要指定 Group ID
'format' = 'json',
'json.fail-on-missing-field' = 'false', -- 如果设置为 false, 则遇到缺失字段不会报错。
'json.ignore-parse-errors' = 'true' -- 如果设置为 true,则忽略任何解析报错。
);

2. 创建 Sink

CREATE TABLE `jdbc_upsert_sink_table` (
window_start TIMESTAMP(3),
window_end TIMESTAMP(3),
num INT,
PRIMARY KEY(window_start,window_end) NOT ENFORCED
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://10.0.0.158:3306/testdb?rewriteBatchedStatements=true&serverTimezone=Asia/Shanghai', -- 请替换为您的实际 MySQL 连接参数
'table-name' = 'oceanus_advanced5_output', -- 需要写入的数据表
'username' = 'root', -- 数据库访问的用户名(需要提供 INSERT 权限)
'password' = 'Tencent123$', -- 数据库访问的密码
'sink.buffer-flush.max-rows' = '200', -- 批量输出的条数
'sink.buffer-flush.interval' = '2s' -- 批量输出的间隔
);

3. 编写业务 SQL

INSERT INTO `jdbc_upsert_sink_table`
SELECT
window_start,window_end,SUM(num) AS num
FROM TABLE(
-- Windowing TVF
TUMBLE(TABLE `kafka_json_source_table`,DESCRIPTOR(event_time),INTERVAL '1' MINUTES)
) GROUP BY window_start,window_end;

4. 查询数据

进入 MySQL 控制台 [7],单击右侧【登陆】快速登陆数据库,选择相应的库表查询数据。

笔者这里设置的 10s 的延迟水印,可以看到在 29~3030~31时间段的数据统计是正确,并没有因为数据延时而出现漏统计的现象。31~32时间段的数据并没有统计出来,这是因为我们最后一条数据时间是2021-12-22 14:31:15,其水印时间为2021-12-22 14:31:05,小于窗口关闭时间,导致这段时间窗口还未关闭、未计算。

总结

  • WARTERMARK是跟随在每条数据上的一条特殊标签,而且只增不减(可以相等)。WARTERMARK并不能影响数据出现在哪个窗口(本例中由event_time决定),其主要决定窗口是否关闭(当水印时间大于窗口结束时间时,窗口关闭并计算)。
  • 如果数据延时过大,例如小时级别,可以配合allowedLateness算子合理性使用WARTERMARK,当达到水印结束时间时,窗口并不关闭,只进行计算操作,当时间到达allowedLateness算子设置的时间后,窗口才真正关闭,并在原先的基础上再次进行计算。如在allowedLateness算子设置的时间后才达到的数据,我们可以使用sideOutputLateData算子将迟到的数据输出到侧输出流进行计算。这里需要注意allowedLatenesssideOutputLateData算子目前只能使用 Stream API 实现。
  • 目前 flink 1.13 的 Windowing TVF 函数并不能单独使用,需配合AGGREGATEJOINTOPN使用。建议优先使用 Windowing TVF 实现窗口聚合等功能,因为 Windowing TVF 更符合 SQL 书写规范,底层优化逻辑也更好。

参考链接

[1] Oceanus 控制台:https://console.cloud.tencent.com/oceanus/overview

[2] 创建独享集群:https://cloud.tencent.com/document/product/849/48298

[3] CKafka 控制台:https://console.cloud.tencent.com/ckafka/index?rid=1

[4] CKafka 创建实例:https://cloud.tencent.com/document/product/597/54839

[5] Ckafka 创建 Topic:https://cloud.tencent.com/document/product/597/54854

[6] 运行 Kafka 客户端:https://cloud.tencent.com/document/product/597/56840

[7] MySQL 控制台:https://console.cloud.tencent.com/cdb

[8] 创建 MySQL 实例:https://cloud.tencent.com/document/product/236/46433

流计算 Oceanus 限量秒杀专享活动火爆进行中↓↓





关注“腾讯云大数据”公众号,技术交流、最新活动、服务专享一站Get~

Flink 实践教程-进阶(5):排序(乱序调整)的更多相关文章

  1. Flink 实践教程-进阶(2):复杂格式数据抽取

    作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发.无缝连接.亚 ...

  2. Flink 实践教程:入门(1):零基础用户实现简单 Flink 任务

    作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发.无缝连接.亚 ...

  3. Flink 实践教程 - 入门(4):读取 MySQL 数据写入到 ES

    ​作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发.无缝连接. ...

  4. Flink 实践教程:入门(6):读取 PG 数据写入 ClickHouse

    作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发.无缝连接.亚 ...

  5. Flink 实践教程-入门(8): 简单 ETL 作业

    作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发.无缝连接.亚 ...

  6. Apache Flink 如何正确处理实时计算场景中的乱序数据

    一.流式计算的未来 在谷歌发表了 GFS.BigTable.Google MapReduce 三篇论文后,大数据技术真正有了第一次飞跃,Hadoop 生态系统逐渐发展起来. Hadoop 在处理大批量 ...

  7. iOS之数组的排序(升序、降序及乱序)

    #pragma mark -- 数组排序方法(升序) - (void)arraySortASC{ //数组排序 //定义一个数字数组 NSArray *array = @[@(3),@(4),@(2) ...

  8. IOS第四天(3:数组的排序和乱序)

    数组的升序和降序 - (void)sortWith:(NSArray *)array { // 排序 array = [array sortedArrayUsingComparator:^NSComp ...

  9. sort排序bug乱序

    项目需要对组件的zIndex值进行降序排列,刚开始采用的是sort进行排序,排完之后感觉没问题,毕竟也是经常用的,可是昨天无意中把zIndex值打出来看,一看不知道,发现只要排序的组件超过10个就出问 ...

随机推荐

  1. 8 — springboot中静态资源处理方式 - 前后端分离 这没屁用

    7中说了thymeleaf,哪还有一个目录是static 那么就来研究一下静态资源 静态资源,springboot底层是怎么去装配的,都在WebMvcAutoConfiguration有答案,去看一下 ...

  2. 30个类手写Spring核心原理之环境准备(1)

    本文节选自<Spring 5核心原理> 1 IDEA集成Lombok插件 1.1 安装插件 IntelliJ IDEA是一款非常优秀的集成开发工具,功能强大,而且插件众多.Lombok是开 ...

  3. TCP中的TIME_WAIT状态

    TIME_WAIT的存在有两大理由 1.可靠地实现TCP全双工连接的终止 2.允许老的可重复分节在网络中消失. 对于理由1,我们知道TCP结束需要四次挥手,若最后一次的客户端的挥手ACK丢失(假设是客 ...

  4. Postman 中 Pre-request Script 常用 js 脚本

    1. 生成一个MD5或SHA1加密的字符串str_md5,str_sha1 string1 = "123456"; var str_md5= CryptoJS.MD5(string ...

  5. 学习Oracle遇到的实际问题(持续更新)

    有三个用户参与这个事情: system用户,拥有表manager. sys create了一个用户item,并赋予权限: SQL> GRANT SELECT ON SYSTEM.MANAGER ...

  6. Spring Boot对静态资源的映射规则

    规则一:所有 " /webjars/** " 请求都去classpath:/META-INF/resources/webjars/找资源 webjars:以jar包的方式引入静态资 ...

  7. JSP中session、cookie和application的使用

    一.session (单用户使用) 1.用处:注册成功后自动登录,登录后记住用户状态等 使用会话对象session实现,一次会话就是一次浏览器和服务器之间的通话,会话可以在多次请求中保存和使用数据. ...

  8. 使用RabbitMQ搭建MQTT服务

    由于近期公司需要搭建一套物联网采集环境,底层设备采用MQTT协议传输数据.服务器环境为linux,考虑到现有环境已经有RabbitMQ环境,Rabbit是基于AMQP协议开发的一套高效的消息传输队列. ...

  9. 【阿菜做实践】利用go语言写一个简单的Pow样例

    本篇博客的主要内容是用go写一个简单的Proof-of-Work共识机制,不涉及到网络通信环节,只是一个本地的简单demo.开发IDE用的是JB Golang. 整个项目的文件结构如下: PoWdem ...

  10. Java Web三大组件之过滤器(Filter)

    什么是过滤器?有什么用? 过滤器JavaWeb三大组件之一,它与Servlet很相似.不过滤器是用来拦截请求的,而不是处理请求的.过滤,顾名思义,就是留下我们想要的,丢掉我们不需要的.例如:某个网站的 ...