An Introduction to Measure Theory and Probability
- Chapter 1 Measure spaces
- Chapter 2 Integration
- Chapter 3 Spaces of integrable functions
- Chapter 4 Hilbert spaces
- Chapter 5 Fourier series
- Chapter 6 Operations on measures
- Chapter 7 The fundamental theorem of the integral calculus
- Chapter 8 Measurable transformations
- Chapter 9 General concepts of Probability
- Chapter 10 Conditional probability and independece
- Chapter 11 Convergence of random variables
- Chapter 12 Sequences of independent variables
- Chapter 13 Stationary sequences and elements of ergodic theory
Luigi Ambrosio, Giuseppe Da Prato, Andrea Mennucci, An Introduction to Measure Theory and Probability.
Chapter 1 Measure spaces
Index:
- ring/algebras P2
- \(\sigma\)-algebras P3
- Borel \(\sigma\)-algebras P3
- \(\sigma\)-additive P4
- \((X,\mathscr{E},\mu)\) P7
- finite, \(\sigma\)-finite P7
- \(\mathscr{E}_{\mu}\), \(\mu-\)completion P8
- \(\pi-\)systems P9
- Dynkin-systems P10
- Outer measure P11
- \(\mathscr{S}:=\{(a,b]:a<b \in \mathbb{R}\}\) P12
- Lebesgue measure \(\lambda\) P12
P9页的Caratheodory定理是在环\(\mathscr{E}\)的基础上建立的(实际上半环足以), 通过半环生成\(\sigma\)域(通过\(\sigma(\mathscr{K})=\mathscr{D}(\mathscr{K})\)). 通过\(\mathscr{E}\)构建可测集域(外测度, 扩张), 由于\(\sigma(\mathscr{E})\)也是可测集, 所以满足所需的可加性. 当定义在\(\mathscr{E}\)的测度\(\mu\)是\(\sigma\)有限的时候(或者存在一个分割), 这个扩张是唯一的.
Chapter 2 Integration
Index:
- Inverse image \(\varphi^{-1}(I)\) P23
- \((\mathscr{E}, \mathscr{F})\)-measureable P23
- canonical representation of \(\varphi\) P25
\]
- repartition function P28
- archimedean integral P30
- \(\mu\)-integrable P32
- \(\mu\)-uniformly integrable P37
什么是可测函数, 以及什么是\(\mathscr{E}\)-可测函数是很重要的 (P24).
什么是\(\mu\)-integrable也是很重要的(在\(\mathscr{E}\)-可测函数定义的).
不同于我看到的一般的积分的定义, 这一节是从 repartition function 和 archimedean integral入手的, 特别是
\]
的定义式非常之有趣.
Chapter 3 Spaces of integrable functions
Index:
- \(L^p\),\(\mathcal{L}^p\) P44
- equivalence class \(\tilde{\varphi}\)
- Legendre transform P45
- \(\mu\)-essentially bounded P45
- Jensen inequality P45
- \(C_b\) P54
首先需要注意的是, \(L^p\)空间是定义在\(\mu\)-integrable上的, 所以其针对值域为\((\mathbb{R},\mathscr{B}(\mathbb{R}))\).
Chapter 4 Hilbert spaces
Index:
- Orthonormal system P63
- Complete orthonormal system P64
- Separable P64
- pre-Hilbert space P57
- Hilbert space (complete) P58
投影定理, 子空间或者凸闭集(条件和结论需要调整).
Chapter 5 Fourier series
Index:
- "Heaviside" function P71
- totally convergent P75
Chapter 6 Operations on measures
Index:
- Measureable rectangle P79
- sections, \(E_x,E^y\) P79
- dimensional constant \(w_n=\mathcal{L}^n(B(0,1))\) p83
- \(\delta\)-box P84
- cylindrical set P86
- concentrated set P92
- singular measures P92
- total variation P97
- stieltjes integral P103
- weak convergence P103
- Tightness of measures P104
- Fourier transform P108
这一章很重要!
Part1: Fubini-Tonelli
Part2: Lebesgue分解定理P92
Part3: Signed measures
Part4: \(F(x):= \mu((-\infty,x])\), P102, 弱收敛 \(\lim_{h\rightarrow \infty}\mu_h(-\infty, x]=\mu((-\infty, x])\) (除去可数多个点)
Part5: Fourier transform, 以及测度的Fourier transform (后面概率的表示函数有用), Levy定理P112.
Chapter 7 The fundamental theorem of the integral calculus
Index:
- density points, rarefaction points P121
- Heaviside function P121
- Cantor-Vitali function P121
- total variation P116
\]
\]
Chapter 8 Measurable transformations
Index:
- differential P123
- Jacobian determinant P125
- diffeomorphism P125
- critical set \(C_F\) P125
\]
有一个问题就是,我看其理论都是限制在非负函数上的, 但是个人感觉直接推广到可测函数上.
需要用到逆函数定理, 很有意思.
\]
Chapter 9 General concepts of Probability
Index:
- elementary event P131
- laws P131
- Random variable P133
- binomial law P138
- Characteristic function P139
注意:
\]
是限制在\(\mathbb{P}\)-integrable之上的.
Chapter 10 Conditional probability and independece
Index:
- Independece of two families P147
- \(\sigma\)-algebra generated by a random variable P147
- Independence of two random variables P147
- Independence of familes \(\mathscr{A}_i\) P149
- \(\sigma(X):= \{\{X \in A\}:A \in \mathscr{E}\}\) P149
- \(\sigma(\{X\}_{i \in I})\) P152
- independent and identically distributed P155
由条件概率衍生到独立性, 随机变量的独立性有几个等价条件P147, P150.
需要区分联合分布的概率和\(\mu\times v\)的区别 (当独立时才等价).
Chapter 11 Convergence of random variables
| 测度 | 概率 |
|---|---|
| 一致收敛 | 一致收敛 |
| 几乎一致收敛 | 几乎一致收敛 |
| 几乎处处收敛 | 几乎处处收敛 |
| 依测度收敛 | 依概率收敛 |
| \(L^p\)收敛 | \(\lim_{n\rightarrow \infty}\mathbb{E}(\cdot)^p=0\) |
| 弱收敛 | 依分布收敛 |
(几乎)一致收敛可以得到几乎处处和依测度收敛.
几乎处处在测度有限的情况下可以推几乎一致收敛, 从而得到依测度收敛.
依测度收敛必存在一个几乎处出收敛的子列.
\(L^p\)收敛一定能够有依测度收敛.
特别地, 依概率收敛有依分布收敛, 只有当依分布收敛到常数\(c\)的时候, 才能推依概率收敛到\(c\)(对应的有限测度).
Chapter 12 Sequences of independent variables
Index:
- terminal \(\sigma\)-algerba \(\cap_{n} \mathscr{B}_n\) P172
- empirical distribution function P180
Kolmogorov's dichotomy P173 很有趣.
大数定律再到中心极限定理.
Chapter 13 Stationary sequences and elements of ergodic theory
Index:
- stationary sequences P186
- measure-preserving transformation P188
- T-invariant P189
- Ergodic maps P189
- conjugate maps P190
平稳序列的定义需要注意, 另外一些理论有趣却渐渐脱离了掌控, 有点摸不着头脑.
An Introduction to Measure Theory and Probability的更多相关文章
- Introduction to graph theory 图论/脑网络基础
Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...
- Study notes for Discrete Probability Distribution
The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...
- Better intuition for information theory
Better intuition for information theory 2019-12-01 21:21:33 Source: https://www.blackhc.net/blog/201 ...
- 图论介绍(Graph Theory)
1 图论概述 1.1 发展历史 第一阶段: 1736:欧拉发表首篇关于图论的文章,研究了哥尼斯堡七桥问题,被称为图论之父 1750:提出了拓扑学的第一个定理,多面体欧拉公式:V-E+F=2 第二阶段( ...
- FAQ: Machine Learning: What and How
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- (转)Awesome Courses
Awesome Courses Introduction There is a lot of hidden treasure lying within university pages scatte ...
- (转) Read-through: Wasserstein GAN
Sorta Insightful Reviews Projects Archive Research About In a world where everyone has opinions, on ...
- [ML] I'm back for Machine Learning
Hi, Long time no see. Briefly, I plan to step into this new area, data analysis. In the past few yea ...
随机推荐
- 基于树莓派部署 code-server
code-server 是 vscode 的服务端程序,通过部署 code-server 在服务器,可以实现 web 端访问 vscode.进而可以达到以下能力: 支持跨设备(Mac/iPad/iPh ...
- Scala(二)【基本使用】
一.变量和数据类型 1.变量 语法:val / var 变量名:变量类型 = 值 val name:String = "zhangsan" 注意 1.val定义的变量想到于java ...
- Hive(五)【DQL数据查询】
目录 一. 基本查询 1.1 算数运算符 1.2 常用聚合函数 1.3 limit 1.4 where 1.5 比较运算符(between|in|is null) 1.6 LIKE和RLIKE 1.7 ...
- 【排序算法】——冒泡排序、选择排序、插入排序、Shell排序等排序原理及Java实现
排序 1.定义: 所谓排序,即是整理文件中的内容,使其按照关键字递增或递减的顺序进行排列. 输入:n个记录,n1,n2--,其对应1的关键字为k1,k2-- 输出:n(i1),n(i2)--,使得k( ...
- [学习总结]6、Android异步消息处理机制完全解析,带你从源码的角度彻底理解
开始进入正题,我们都知道,Android UI是线程不安全的,如果在子线程中尝试进行UI操作,程序就有可能会崩溃.相信大家在日常的工作当中都会经常遇到这个问题,解决的方案应该也是早已烂熟于心,即创建一 ...
- 【Linux】【Basis】【网络】网络相关的内核参数
Linux系统内核设置优化tcp网络,# vi /etc/sysctl.conf,添加以下内容 net.ipv4.tcp_syncookies = 1 表示开启SYN Cookies.当出现SYN等待 ...
- SpringAOP浅析
1.问题 问题:想要添加日志记录.性能监控.安全监测 2.最初解决方案 2.1.最初解决方案 缺点:太多重复代码,且紧耦合 2.2.抽象类进行共性设计,子类进行个性设计,此处不讲解,缺点一荣俱荣,一损 ...
- java实现文件压缩
java实现文件压缩:主要是流与流之间的传递 代码如下: package com.cst.klocwork.service.zip; import java.io.File; import java. ...
- matplotlib画直线图的基本用法
一 figure使用 1 import numpy as np 2 import matplotlib.pyplot as plt 3 4 # 从-3到中取50个数 5 x = np.linspac ...
- ssm动态查询向前台传json
1.数据协议层 public User selectById(Integer id);//通过id值查询用户 2.数据层 <select id="selectById" re ...