1、什么是线性规划

  线性规划(Linear programming),在线性等式或不等式约束条件下求解线性目标函数的极值问题,常用于解决资源分配、生产调度和混合问题。例如:

max		fx = 2*x1 + 3*x2 - 5*x3
s.t. x1 + 3*x2 + x3 <= 12
2*x1 - 5*x2 + x3 >= 10
x1 + x2 + x3 = 7
x1, x2, x3 >=0

  线性规划问题的建模和求解,通常按照以下步骤进行:

(1)问题定义,确定决策变量、目标函数和约束条件;

(2)模型构建,由问题描述建立数学方程,并转化为标准形式的数学模型;

(3)模型求解,用标准模型的优化算法对模型求解,得到优化结果;

=== 关注 Youcans,分享更多原创系列 https://www.cnblogs.com/youcans/ ===

2、PuLP 库求解线性规划

  PuLP是一个开源的第三方工具包,可以求解线性规划、整数规划、混合整数规划问题。

  下面以该题为例讲解 PuLP 求解线性规划问题的步骤:

(0)导入 PuLP库函数

    import pulp

(1)定义一个规划问题

    MyProbLP = pulp.LpProblem("LPProbDemo1", sense=pulp.LpMaximize)

  pulp.LpProblem 是定义问题的构造函数。

  "LPProbDemo1"是用户定义的问题名(用于输出信息)。

  参数 sense 用来指定求最小值/最大值问题,可选参数值:LpMinimize、LpMaximize 。

(2)定义决策变量

    x1 = pulp.LpVariable('x1', lowBound=0, upBound=7, cat='Continuous')
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Continuous')
x3 = pulp.LpVariable('x3', lowBound=0, upBound=7, cat='Continuous')

  pulp.LpVariable 是定义决策变量的函数。

  'x1' 是用户定义的变量名。

  参数 lowBound、upBound 用来设定决策变量的下界、上界;可以不定义下界/上界,默认的下界/上界是负无穷/正无穷。本例中 x1,x2,x3 的取值区间为 [0,7]。

  参数 cat 用来设定变量类型,可选参数值:'Continuous' 表示连续变量(默认值)、' Integer ' 表示离散变量(用于整数规划问题)、' Binary ' 表示0/1变量(用于0/1规划问题)。

(3)添加目标函数

    MyProbLP += 2*x1 + 3*x2 - 5*x3  	# 设置目标函数

  添加目标函数使用 "问题名 += 目标函数式" 格式。

(4)添加约束条件

    MyProbLP += (2*x1 - 5*x2 + x3 >= 10)  # 不等式约束
MyProbLP += (x1 + 3*x2 + x3 <= 12) # 不等式约束
MyProbLP += (x1 + x2 + x3 == 7) # 等式约束

  添加约束条件使用 "问题名 += 约束条件表达式" 格式。

  约束条件可以是等式约束或不等式约束,不等式约束可以是 小于等于 或 大于等于,分别使用关键字">="、"<="和"=="。

(5)求解

    MyProbLP.solve()
print("Status:", pulp.LpStatus[MyProbLP.status]) # 输出求解状态
for v in MyProbLP.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F(x) = ", pulp.value(MyProbLP.objective)) #输出最优解的目标函数值

  solve() 是求解函数。PuLP默认采用 CBC 求解器来求解优化问题,也可以调用其它的优化器来求解,如:GLPK,COIN CLP/CBC,CPLEX,和GUROBI,但需要另外安装。 

3、Python程序和运行结果

完整的程序代码如下:

import pulp
MyProbLP = pulp.LpProblem("LPProbDemo1", sense=pulp.LpMaximize)
x1 = pulp.LpVariable('x1', lowBound=0, upBound=7, cat='Continuous')
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Continuous')
x3 = pulp.LpVariable('x3', lowBound=0, upBound=7, cat='Continuous')
MyProbLP += 2*x1 + 3*x2 - 5*x3 # 设置目标函数
MyProbLP += (2*x1 - 5*x2 + x3 >= 10) # 不等式约束
MyProbLP += (x1 + 3*x2 + x3 <= 12) # 不等式约束
MyProbLP += (x1 + x2 + x3 == 7) # 等式约束
MyProbLP.solve()
print("Status:", pulp.LpStatus[MyProbLP.status]) # 输出求解状态
for v in MyProbLP.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F(x) = ", pulp.value(MyProbLP.objective)) #输出最优解的目标函数值
# === 关注 Youcans,分享更多原创系列 https://www.cnblogs.com/youcans/ ===

程序运行结果如下:

Welcome to the CBC MILP Solver
Version: 2.9.0
Build Date: Feb 12 2015 Status: Optimal
x1 = 6.4285714
x2 = 0.57142857
x3 = 0.0
F(x) = 14.57142851

=== 关注 Youcans,分享更多原创系列 https://www.cnblogs.com/youcans/ ===

版权说明:

原创作品

Copyright 2021 YouCans, XUPT

Crated:2021-04-28

Python数模笔记-PuLP库(1)线性规划入门的更多相关文章

  1. Python数模笔记-PuLP库(2)线性规划进阶

    1.基于字典的创建规划问题 上篇中介绍了使用 LpVariable 对逐一定义每个决策变量,设定名称.类型和上下界,类似地对约束条件也需要逐一设置模型参数.在大规模的规划问题中,这样逐个定义变量和设置 ...

  2. Python数模笔记-Scipy库(1)线性规划问题

    1.最优化问题建模 最优化问题的三要素是决策变量.目标函数和约束条件. (1)分析影响结果的因素是什么,确定决策变量 (2)决策变量与优化目标的关系是什么,确定目标函数 (3)决策变量所受的限制条件是 ...

  3. Python数模笔记-StatsModels 统计回归(4)可视化

    1.如何认识可视化? 图形总是比数据更加醒目.直观.解决统计回归问题,无论在分析问题的过程中,还是在结果的呈现和发表时,都需要可视化工具的帮助和支持. 需要指出的是,虽然不同绘图工具包的功能.效果会有 ...

  4. Python数模笔记-StatsModels 统计回归(1)简介

    1.关于 StatsModels statsmodels(http://www.statsmodels.org)是一个Python库,用于拟合多种统计模型,执行统计测试以及数据探索和可视化. 2.文档 ...

  5. Python数模笔记-NetworkX(3)条件最短路径

    1.带有条件约束的最短路径问题 最短路径问题是图论中求两个顶点之间的最短路径问题,通常是求最短加权路径. 条件最短路径,指带有约束条件.限制条件的最短路径.例如,顶点约束,包括必经点或禁止点的限制:边 ...

  6. Python数模笔记-Sklearn(1) 介绍

    1.SKlearn 是什么 Sklearn(全称 SciKit-Learn),是基于 Python 语言的机器学习工具包. Sklearn 主要用Python编写,建立在 Numpy.Scipy.Pa ...

  7. Python数模笔记-(1)NetworkX 图的操作

    1.NetworkX 图论与网络工具包 NetworkX 是基于 Python 语言的图论与复杂网络工具包,用于创建.操作和研究复杂网络的结构.动力学和功能. NetworkX 可以以标准和非标准的数 ...

  8. Python数模笔记-Sklearn(4)线性回归

    1.什么是线性回归? 回归分析(Regression analysis)是一种统计分析方法,研究自变量和因变量之间的定量关系.回归分析不仅包括建立数学模型并估计模型参数,检验数学模型的可信度,也包括利 ...

  9. Python数模笔记-Sklearn(2)样本聚类分析

    1.分类的分类 分类的分类?没错,分类也有不同的种类,而且在数学建模.机器学习领域常常被混淆. 首先我们谈谈有监督学习(Supervised learning)和无监督学习(Unsupervised ...

随机推荐

  1. 在Visual Studio 中使用git——什么是Git(一)

    写程序必然需要版本控制,哪怕是个人项目也是必须的,微软从Visual Studio 2019开始默认提供了对Git的支持,Visual Studio 2019之前的版本可以安装相应的插件来实现Git功 ...

  2. 基于IMU与磁力计的手势提取手套-原理及其实现

    手势提取依据所采用传感器的不同,可以分为基于视觉,基于惯性传感器,基于FSR,基于EMG传感器的方法.其中基于视觉的方法使用场景有限,且无法获取精确的手指关节角度:基于FSR的方法难以布置传感器且难以 ...

  3. 软件篇-06-SLAM小车Self Navigation

    当SLAM小车能够以较高的精度运动到人为设置的目标点时,下一步就是把SLAM小车放到一个陌生的环境中,让它自己建图了.为什么?因为它已经是一只成熟的SLAM小车了.   我这里写的比较简单,刚写还没几 ...

  4. 看了这篇还不会Linux性能分析和优化,你来打我

    前言 一般互联网的项目都是部署在linux服务器上的,如果linux服务器出了问题,那么咱们平时学习的高并发,稳定性之类的是没有任何意义的,所以对linux性能的把握就显得非常重要,当然很多同学可能觉 ...

  5. POJ 1386 欧拉路的判定

    题意:       给你n个单词,问你有没有一种排列方式可以所有单词的首部是相邻单词的尾部. 思路:       这个题目还挺基础的,就是个欧拉的判定,首先对于每一个单词,我们把他抽象成边,每个单词两 ...

  6. hdu4941 map交换行列

    题意:      有一个大矩阵,某些格子上有数字,然后有三种操作, 1 交换行 2 交换列 3 询问当前坐标数值 思路:      直接用map去映射行列,用二维的map去存数字就行了,水题,想不通的 ...

  7. hdu4966 最小树形图(最少辅导花费)

    题意:       以一些科目,和辅导班,每个科目最终要求修到某个等级,可以花一定的钱在辅导班把某一科目修到某一等级,进入辅导班的时候会有一个限制,那就是达到他给出的科目和等级限制,比如a b c d ...

  8. POJ2195费用流+BFS建图

    题意:       给你一个n*m的地图,上面有w个人,和w个房子,每个人都要进房子,每个房子只能进一个人,问所有人都进房子的路径总和最少是多少? 思路:       比较简单的最大流,直接建立两排, ...

  9. POJ1135比较有意思的对短路(多米骨牌)

    题意:      有一个骨牌游戏,就是推到一个后所有的牌都会被退到的那种游戏,起点是1,有两种骨牌,一种是关键牌,另一种是普通牌,普通牌是连接关键牌用的,给你一些边a b c的意思是关键牌a倒之后c时 ...

  10. SSH后门万能密码

    当我们在获得一台Linux服务器的 root 权限后,我们第一想做的就是如何维持这个权限,维持权限肯定想到的就是在目标服务器留下一个后门.但是留普通后门,肯定很容易被发现.我们今天要讲的就是留一个SS ...