AT4996-[AGC034F]RNG and XOR【FWT,生成函数】
正题
题目链接:https://www.luogu.com.cn/problem/AT4996
题目大意
给出一个\(0\sim 2^n-1\)下标的数组\(p\),\(p_i\)表示有\(p_i\)的权重概率选择\(i\)。
开始有一个\(x=0\),每次选择一个数字\(y\)让\(x=x\ xor\ y\)
对于每个\(i\)求期望多久后第一次变成\(i\)。
\(1\leq n\leq 18\)
解题思路
搞一个异或卷积的生成函数,先搞出概率的函数\(P\)。
然后设\(E\)表示答案的函数,那么有
\]
\(c\)表示余项,\(I(x)=\sum_{i=1}^{\infty}x^i\)
先求出余项\(c\)来,设\(S(A)\)表示生成函数\(A\)的所有系数和
\]
\(S(P)=1\),\(S(I)=2^n\),那我们有\(c=S(I)=2^n\)
所以就有
\]
\]
\]
然后跑\(FWT\)就好了。
注意跑出来的\(E_0\neq 0\),我们要把所有的答案减去\(E_0\)
时间复杂度\(O(2^nn)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1<<19,P=998244353;
ll n,k,f[N],g[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void FWT(ll *f,ll op){
for(ll p=2;p<=n;p<<=1){
ll len=(p>>1);
for(ll k=0;k<n;k+=p)
for(ll i=k;i<k+len;i++){
ll x=f[i],y=f[i+len];
f[i]=(x+y)*op%P;
f[i+len]=(x-y+P)*op%P;
}
}
return;
}
signed main()
{
scanf("%lld",&k);n=1<<k;
ll sum=0;
for(ll i=0;i<n;i++){
scanf("%lld",&f[i]);
sum=(sum+f[i])%P;g[i]=P-1;
}
sum=power(sum,P-2);
for(ll i=0;i<n;i++)f[i]=f[i]*sum%P;
g[0]=(g[0]+n)%P;f[0]=(f[0]+P-1)%P;
FWT(f,1);FWT(g,1);
for(ll i=0;i<n;i++)
f[i]=g[i]*power(f[i],P-2)%P;
FWT(f,(P+1)/2);
for(ll i=0;i<n;i++)
printf("%lld\n",(f[i]-f[0]+P)%P);
return 0;
}
AT4996-[AGC034F]RNG and XOR【FWT,生成函数】的更多相关文章
- 【杂题】[AGC034F] RNG and XOR【集合幂级数】【FWT】【DP】
Description 你有一个随机数生成器,它会以一定的概率生成[0,2^N-1]中的数,每一个数的概率是由序列A给定的,Pi=Ai/sum(Ai) 现在有一个初始为0的数X,每一轮随机生成一个数v ...
- @atcoder - AGC034F@ RNG and XOR
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个值域在 [0, 2^N) 的随机数生成器,给定参数 A[ ...
- [AGC034F]RNG and XOR
题目 点这里看题目. 分析 第一步可以将\(A\)数组转化成概率\(P(j)\):每一步操作异或\(j\)的概率. 接着发现,\(x\)从\(0\)变成\(i\)的期望等于\(x\)从\( ...
- Atcoder Grand Contest 034 F - RNG and XOR(FWT)
Atcoder 题面传送门 & 洛谷题面传送门 tsc 考试前 A 的题了,结果到现在才写这篇题解--为了 2mol 我已经一周没碰键盘了,现在 2mol 结束算是可以短暂的春天 短暂地卷一会 ...
- bzoj千题计划308:bzoj4589: Hard Nim(倍增FWT+生成函数)
https://www.lydsy.com/JudgeOnline/problem.php?id=4589 n*m*m 做法 dp[i][j] 前i堆石子,异或和为j的方案数 第一重循环可以矩阵快速幂 ...
- [atAGC034F]RNG and XOR
令$N=2^{n}$先将$\forall 0\le i<N,a_{i}$除以$\sum_{i=0}^{N-1}a_{i}$,即变为概率 令$f_{i}$表示$i$的答案(第一次变成$i$的期望步 ...
- GOOD BYE OI
大米饼正式退役了,OI给我带来很多东西 我会的数学知识基本都在下面了 博客园的评论区问题如果我看到了应该是会尽力回答的... 这也是我作为一个OIer最后一次讲课的讲稿 20190731 多项式乘法 ...
- FWT 学习笔记
FWT学习笔记 好久以前写的,先粘上来 定义数组 \(n=2^k\) \(A=[a_0,a_1,a_2,a_3,...,a_{n-1}]\) 令\(A_0=[a_0,a_1,a_2,...,a_{\f ...
- 能轻松背板子的FWT(快速沃尔什变换)
FWT应用 我不知道\(FWT\)的严格定义 百度百科和维基都不知道给一坨什么****东西** FWT(Fast Walsh Fransform),中文名快速沃尔什变换 然后我也不知道\(FWT\)到 ...
随机推荐
- maven打包war,导入本地jar包
方法1: 一 . 在项目根目录创建lib文件夹,把jar放入lib文件夹中 二 . 在项目中使用本地jar pom文件配置如下: <properties> <project.buil ...
- 【java web】过滤器filter
一.过滤器简介 过滤器filter依赖于servlet容器 所谓过滤器顾名思义是用来过滤的,Java的过滤器能够为我们提供系统级别的过滤,也就是说,能过滤所有的web请求, 这一点,是拦截器无法做到的 ...
- 【springcloud】配置中心(Config-Server)
转自:https://blog.csdn.net/pengjunlee/article/details/88061736 参考文章 Spring Cloud 配置中心为分布式系统中的服务器端和客户端提 ...
- Windows搭建mac黑苹果系统
最近看到一个开源工具tidevice,是可以脱离mac来做ios自动化测试的.看到这么方便,就想着来尝尝鲜.但由于使用该工具,是需要基于WebDriverAgent的,该工具又需要使用Xcode重签名 ...
- vue-父子组件之传值和单项数据流问题
前言 我们知道 vue 中父子组件的核心概念是单项数据流问题,props 是单项传递的.那究竟什么是单项数据流问题,这篇文章来总结一下关于这个知识点的学习笔记. 正文 1.父组件传值给子组件 < ...
- uniapp 封装 request 并 配置跨域,( 本地 + 线上 + 封装 )
找到上面这个 文件,不管是用 命令创建 还是 用 HBX 创建,都一样会有这个文件的,然后跟着截图复制粘贴就好了. // 这是配置本地能跨域的,或者你可以直接让后端给你设置请求头,避免了跨域. &qu ...
- JUC原子操作类与乐观锁CAS
JUC原子操作类与乐观锁CAS 硬件中存在并发操作的原语,从而在硬件层面提升效率.在intel的CPU中,使用cmpxchg指令.在Java发展初期,java语言是不能够利用硬件提供的这些便利来提 ...
- Django的模板文件的路径设置
TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS' ...
- C# 爬虫框架实现 流程_各个类开发
目录链接:C# 爬虫框架实现 概述 对比通用爬虫结构,我将自己写的爬虫分为五个类实现: Spider主类:负责设置爬虫的各项属性 Scheduler类:负责提供URL到下载类,接收URL并做去重 Do ...
- Python常见问题 - python3 使用requests发送HTTPS请求报certificate verify failed 错误
当你使用 requests 发送HTTPS请求时 requests.get(url, parmas=parmas, headers=header, cookies=cookie) 出现了以下错误 HT ...