bzoj4784 [Zjoi2017]仙人掌
Description

Input
Output
Sample Input
3 2
1 2
1 3
5 4
1 2
2 3
2 4
1 5
Sample Output
2
8
对于第一组样例合法加边的方案有 {}, {(2,3)},共 2 种。
正解:仙人掌$DP$
这题好难啊。。我看题解都看了好久才看懂。。
先给两个博客:http://blog.csdn.net/akak__ii/article/details/65935711
ljh2000:http://www.cnblogs.com/ljh2000-jump/p/6613829.html
首先特判不是仙人掌的情况,只要判每个点到达根的路径是否大于$2$条就行了。
然后我们可以先把环拆掉,也就是把环边和对应的那个点与它父亲断开,因为环是不会对答案造成贡献的。然后这个仙人掌就会变成一个森林。于是我们就成功地把仙人掌$DP$变成了树形$DP$。我们单独考虑每棵树的答案,乘法原理一下就好。
然后就是对于每棵树统计答案了。
对于一个点$x$,我们设$f[x]$表示$x$这棵子树连边形成仙人掌的方案数。我们发现,可以分为两种情况:
1,$x$这棵子树一定不与祖先连边,这个是根的情况。
2,$x$这棵子树可能与祖先连边,这个是除了根以外其他点的情况。
对于第1种情况,我们把$x$所有的儿子$f[v]$都乘起来,并且我们计算一下$x$的儿子互相连边的情况,再乘起来就行了。
对于$x$的儿子互相连边的情况,我们可以找到一个规律。我们设$g[i]$表示$i$个儿子互相连边的合法方案数,那么$g[i]=g[i-1]+(i-1)*g[i-2]$。
这是怎么来的呢?我们考虑一下,如果第$i$个点不与其他点连边,那么方案数就是$g[i-1]$,否则,第$i$个点与第$j$个点连边,那么第$j$个点肯定不能与其他点连边,所以方案数是$g[i-2]$,总共有$i-1$种情况,所以$g[i]=g[i-1]+(i-1)*g[i-2]$。那么我们设$x$有$tot$个儿子,于是$f[x]=\prod f[v]*g[tot]$。
那么现在我们只要考虑第二种情况了。其实仔细想想,就是$x$的所有儿子$f[v]$相乘,再乘上$g[tot+1]$就行了。因为这就是$tot+1$个点互相连边的情况。于是$f[x]=\prod f[v]*g[tot+1]$。
于是这道题我们就完美地解决了。
//It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define rhl (998244353)
#define inf (1<<30)
#define M (1000010)
#define N (500010)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct edge{ int nt,to; }G[*M];
struct node{ int i,d; }a[N]; int head[N],fa[N],dfn[N],dep[N],lu[N],n,m,cnt;
ll f[N],g[N],ans; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void insert(RG int from,RG int to){
G[++cnt]=(edge){head[from],to},head[from]=cnt; return;
} il int cmpd(const node &a,const node &b){ return a.d<b.d; } il void pre(){ //预处理g数组
g[]=g[]=;
for (RG int i=;i<=;++i) g[i]=(g[i-]+(i-)*g[i-])%rhl;
return;
} il void dfs(RG int x,RG int p){
fa[x]=p,dfn[x]=++cnt,dep[x]=dep[p]+;
for (RG int i=head[x],v;i;i=G[i].nt){
v=G[i].to; if (dfn[v]) continue;
dfs(v,x);
}
return;
} il void dp(RG int x,RG int rt){
lu[x]=-,f[x]=; RG int tot=,v;
for (RG int i=head[x];i;i=G[i].nt){
v=G[i].to; if (v==fa[x] || lu[v]!=) continue;
tot++; dp(v,); f[x]=f[x]*f[v]%rhl;
}
if (!rt) f[x]=f[x]*g[tot+]%rhl;
else f[x]=f[x]*g[tot]%rhl;
return;
} il void work(){
n=gi(),m=gi(),cnt=;
for (RG int i=;i<=n;++i) lu[i]=fa[i]=dep[i]=dfn[i]=head[i]=;
for (RG int i=,u,v;i<=m;++i) u=gi(),v=gi(),insert(u,v),insert(v,u);
cnt=; dfs(,);
for (RG int i=,u,v;i<=m;++i){ //统计每个点到根的路径数
u=G[i<<].to,v=G[i<<|].to;
if (dfn[u]<dfn[v]) swap(u,v);
while (u!=v){
if (lu[u]==){ printf("0\n"); return; }
lu[u]++,u=fa[u];
}
}
for (RG int i=;i<=n;++i) a[i].i=i,a[i].d=dep[i];
sort(a+,a+n+,cmpd); ans=;
for (RG int i=,x;i<=n;++i){
x=a[i].i; if (lu[x]==-) continue;
dp(x,); ans=ans*f[x]%rhl;
}
printf("%lld\n",ans); return;
} int main(){
File("cactus");
pre(); RG int T=gi();
while (T--) work();
return ;
}
bzoj4784 [Zjoi2017]仙人掌的更多相关文章
- [BZOJ4784][ZJOI2017]仙人掌(树形DP)
4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 312 Solved: 181[Submit][Status] ...
- BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)
首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...
- 2019.02.07 bzoj4784: [Zjoi2017]仙人掌(仙人掌+树形dp)
传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi表示把iii为根的子树加边形成仙人掌的方案数. ...
- 【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)
[BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙 ...
- ●洛谷P3687 [ZJOI2017]仙人掌
题链: https://www.luogu.org/problemnew/show/P3687题解: 计数DP,树形DP. (首先对于这个图来说,如果初始就不是仙人掌,那么就直接输出0) 然后由于本来 ...
- 【做题】ZJOI2017仙人掌——组合计数
原文链接 https://www.cnblogs.com/cly-none/p/ZJOI2017cactus.html 给出一个\(n\)个点\(m\)条边的无向连通图,求有多少种加边方案,使得加完后 ...
- LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】
题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然 ...
- zjoi2017 仙人掌
题解: 好难的dp啊...看题解看了好久才看懂 http://blog.csdn.net/akak__ii/article/details/65935711 如果一开始的图就不是仙人掌,答案显然为0, ...
- 【题解】ZJOI2017仙人掌
感觉这题很厉害啊,虽然想了一天多但还是失败了……(:д:) 这题首先注意到给定图中如果存在环其实对于答案是没有影响的.然后关键之处就在于两个 \(dp\) 数组,其中 \(f[u]\) 表示以 \(u ...
随机推荐
- js中页面刷新和页面跳转的方法总结 [ 转自欢醉同学 ]
.js中cookie的基本用法简介 2009-12-15 js中页面刷新和页面跳转的方法总结 文章分类:Web前端 关键字: javascript js中页面刷新和页面跳转的方法总结 1.histor ...
- python安装插件包注意事项
注意!注意!注意!安装以来lib库时强烈建议使用pip安装:原因:nu1:用exe安装会出现各种意想不到让您惊讶的错误!!!nu2:这种错误很难解决且花费无用功!!! 使用pip安装: nu1:使用. ...
- jeesite学习(一) common部分(1)
我们按照先细节后整体的方式来进行学习,即先了解各个包中包含的内容,再从整体上看各个包之间的关系. 0 common中的包 先看jeesite的common组件,common中共包含14个包(如下图), ...
- 【转】Django Middleware
Django 处理一个 Request 的过程是首先通过中间件,然后再通过默认的 URL 方式进行的.我们可以在 Middleware 这个地方把所有Request 拦截住,用我们自己的方式完成处理以 ...
- 深入解读Python的unittest并拓展HTMLTestRunner
unnitest是Python的一个重要的单元测试框架,对于用Python进行开发的同事们可能不需要对他有过深入的了解会用就行,但是,对于自动化测试人员我觉得是要熟知unnitest的执行原理以及相关 ...
- JavaScript 方法调用模式和函数调用模式
这两天在读<JavaScript语言精粹>关于第4章函数调用的几种模式琢磨了半天. 这里就说一下方法调用模式跟函数调用模式. 方法调用模式: 当一个函数被保存为对象的一个属性时,我们称它为 ...
- Redis(2015.08.03笔记一)
一.redis简介 Redis是一种面向"键/值"对数据类型的内存数据库,可以满足我们对海量数据的读写需求. redis的键只能是字符串 redis的值支持多种数据类型: 1:字符 ...
- iOS开发之视频播放
1.如何播放视频 iOS提供了MPMoviePlayerController.MPMoviePlayerViewController两个类,可以用来轻松播放视频和网络流媒体\网络音频. 提示:网络音频 ...
- yum仓库,RPM打包
rpm命令: -qa 查看软件包是否被安装 -ivh 安装rpm包 -e 卸载包 -qpl 查看rpm包中有什么东西 -qi 查看软件的详细安装信息:安装路径 安装fpm #FPM是Ruby模块yu ...
- xml转义符
今天在看项目的UrlRewriteFilter(动态url静态化,有利于搜索引擎搜索)的配置文件urlrewrite.xml时,看到了“&”字符,查询之后才知道xml文件中的转义比html中的 ...