Description

如果一个无自环无重边无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌。所谓简单环即不经过重复的结点的环。

现在九条可怜手上有一张无自环无重边的无向连通图,但是她觉得这张图中的边数太少了,所以她想要在图上连上一些新的边。同时为了方便的存储这张无向图,图中的边数又不能太多。经过权衡,她想要加边后得到的图为一棵仙人掌。不难发现合法的加边方案有很多,可怜想要知道总共有多少不同的加边方案。两个加边方案是不同的当且仅当一个方案中存在一条另一个方案中没有的边。

Input

多组数据,第一行输入一个整数T表示数据组数。
每组数据第一行输入两个整数n,m,表示图中的点数与边数。
接下来m行,每行两个整数u,v(1≤u,v≤n,u!=v)表示图中的一条边。保证输入的图联通且没有自环与重边
Sigma(n)<=5*10^5,m<=10^6,1<=m<=n*(n-1)/2

Output

对于每组数据,输出一个整数表示方案数,当然方案数可能很大,请对998244353取模后输出。

Sample Input

2
3 2
1 2
1 3
5 4
1 2
2 3
2 4
1 5

Sample Output

2
8
对于第一组样例合法加边的方案有 {}, {(2,3)},共 2 种。

正解:仙人掌$DP$

这题好难啊。。我看题解都看了好久才看懂。。

先给两个博客:http://blog.csdn.net/akak__ii/article/details/65935711

ljh2000:http://www.cnblogs.com/ljh2000-jump/p/6613829.html

首先特判不是仙人掌的情况,只要判每个点到达根的路径是否大于$2$条就行了。

然后我们可以先把环拆掉,也就是把环边和对应的那个点与它父亲断开,因为环是不会对答案造成贡献的。然后这个仙人掌就会变成一个森林。于是我们就成功地把仙人掌$DP$变成了树形$DP$。我们单独考虑每棵树的答案,乘法原理一下就好。

然后就是对于每棵树统计答案了。

对于一个点$x$,我们设$f[x]$表示$x$这棵子树连边形成仙人掌的方案数。我们发现,可以分为两种情况:

1,$x$这棵子树一定不与祖先连边,这个是根的情况。

2,$x$这棵子树可能与祖先连边,这个是除了根以外其他点的情况。

对于第1种情况,我们把$x$所有的儿子$f[v]$都乘起来,并且我们计算一下$x$的儿子互相连边的情况,再乘起来就行了。

对于$x$的儿子互相连边的情况,我们可以找到一个规律。我们设$g[i]$表示$i$个儿子互相连边的合法方案数,那么$g[i]=g[i-1]+(i-1)*g[i-2]$。

这是怎么来的呢?我们考虑一下,如果第$i$个点不与其他点连边,那么方案数就是$g[i-1]$,否则,第$i$个点与第$j$个点连边,那么第$j$个点肯定不能与其他点连边,所以方案数是$g[i-2]$,总共有$i-1$种情况,所以$g[i]=g[i-1]+(i-1)*g[i-2]$。那么我们设$x$有$tot$个儿子,于是$f[x]=\prod f[v]*g[tot]$。

那么现在我们只要考虑第二种情况了。其实仔细想想,就是$x$的所有儿子$f[v]$相乘,再乘上$g[tot+1]$就行了。因为这就是$tot+1$个点互相连边的情况。于是$f[x]=\prod f[v]*g[tot+1]$。

于是这道题我们就完美地解决了。

 //It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define rhl (998244353)
#define inf (1<<30)
#define M (1000010)
#define N (500010)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct edge{ int nt,to; }G[*M];
struct node{ int i,d; }a[N]; int head[N],fa[N],dfn[N],dep[N],lu[N],n,m,cnt;
ll f[N],g[N],ans; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void insert(RG int from,RG int to){
G[++cnt]=(edge){head[from],to},head[from]=cnt; return;
} il int cmpd(const node &a,const node &b){ return a.d<b.d; } il void pre(){ //预处理g数组
g[]=g[]=;
for (RG int i=;i<=;++i) g[i]=(g[i-]+(i-)*g[i-])%rhl;
return;
} il void dfs(RG int x,RG int p){
fa[x]=p,dfn[x]=++cnt,dep[x]=dep[p]+;
for (RG int i=head[x],v;i;i=G[i].nt){
v=G[i].to; if (dfn[v]) continue;
dfs(v,x);
}
return;
} il void dp(RG int x,RG int rt){
lu[x]=-,f[x]=; RG int tot=,v;
for (RG int i=head[x];i;i=G[i].nt){
v=G[i].to; if (v==fa[x] || lu[v]!=) continue;
tot++; dp(v,); f[x]=f[x]*f[v]%rhl;
}
if (!rt) f[x]=f[x]*g[tot+]%rhl;
else f[x]=f[x]*g[tot]%rhl;
return;
} il void work(){
n=gi(),m=gi(),cnt=;
for (RG int i=;i<=n;++i) lu[i]=fa[i]=dep[i]=dfn[i]=head[i]=;
for (RG int i=,u,v;i<=m;++i) u=gi(),v=gi(),insert(u,v),insert(v,u);
cnt=; dfs(,);
for (RG int i=,u,v;i<=m;++i){ //统计每个点到根的路径数
u=G[i<<].to,v=G[i<<|].to;
if (dfn[u]<dfn[v]) swap(u,v);
while (u!=v){
if (lu[u]==){ printf("0\n"); return; }
lu[u]++,u=fa[u];
}
}
for (RG int i=;i<=n;++i) a[i].i=i,a[i].d=dep[i];
sort(a+,a+n+,cmpd); ans=;
for (RG int i=,x;i<=n;++i){
x=a[i].i; if (lu[x]==-) continue;
dp(x,); ans=ans*f[x]%rhl;
}
printf("%lld\n",ans); return;
} int main(){
File("cactus");
pre(); RG int T=gi();
while (T--) work();
return ;
}

bzoj4784 [Zjoi2017]仙人掌的更多相关文章

  1. [BZOJ4784][ZJOI2017]仙人掌(树形DP)

    4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 312  Solved: 181[Submit][Status] ...

  2. BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)

    首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...

  3. 2019.02.07 bzoj4784: [Zjoi2017]仙人掌(仙人掌+树形dp)

    传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi​表示把iii为根的子树加边形成仙人掌的方案数. ...

  4. 【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)

    [BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙 ...

  5. ●洛谷P3687 [ZJOI2017]仙人掌

    题链: https://www.luogu.org/problemnew/show/P3687题解: 计数DP,树形DP. (首先对于这个图来说,如果初始就不是仙人掌,那么就直接输出0) 然后由于本来 ...

  6. 【做题】ZJOI2017仙人掌——组合计数

    原文链接 https://www.cnblogs.com/cly-none/p/ZJOI2017cactus.html 给出一个\(n\)个点\(m\)条边的无向连通图,求有多少种加边方案,使得加完后 ...

  7. LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】

    题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然 ...

  8. zjoi2017 仙人掌

    题解: 好难的dp啊...看题解看了好久才看懂 http://blog.csdn.net/akak__ii/article/details/65935711 如果一开始的图就不是仙人掌,答案显然为0, ...

  9. 【题解】ZJOI2017仙人掌

    感觉这题很厉害啊,虽然想了一天多但还是失败了……(:д:) 这题首先注意到给定图中如果存在环其实对于答案是没有影响的.然后关键之处就在于两个 \(dp\) 数组,其中 \(f[u]\) 表示以 \(u ...

随机推荐

  1. js中页面刷新和页面跳转的方法总结 [ 转自欢醉同学 ]

    .js中cookie的基本用法简介 2009-12-15 js中页面刷新和页面跳转的方法总结 文章分类:Web前端 关键字: javascript js中页面刷新和页面跳转的方法总结 1.histor ...

  2. python安装插件包注意事项

    注意!注意!注意!安装以来lib库时强烈建议使用pip安装:原因:nu1:用exe安装会出现各种意想不到让您惊讶的错误!!!nu2:这种错误很难解决且花费无用功!!! 使用pip安装: nu1:使用. ...

  3. jeesite学习(一) common部分(1)

    我们按照先细节后整体的方式来进行学习,即先了解各个包中包含的内容,再从整体上看各个包之间的关系. 0 common中的包 先看jeesite的common组件,common中共包含14个包(如下图), ...

  4. 【转】Django Middleware

    Django 处理一个 Request 的过程是首先通过中间件,然后再通过默认的 URL 方式进行的.我们可以在 Middleware 这个地方把所有Request 拦截住,用我们自己的方式完成处理以 ...

  5. 深入解读Python的unittest并拓展HTMLTestRunner

    unnitest是Python的一个重要的单元测试框架,对于用Python进行开发的同事们可能不需要对他有过深入的了解会用就行,但是,对于自动化测试人员我觉得是要熟知unnitest的执行原理以及相关 ...

  6. JavaScript 方法调用模式和函数调用模式

    这两天在读<JavaScript语言精粹>关于第4章函数调用的几种模式琢磨了半天. 这里就说一下方法调用模式跟函数调用模式. 方法调用模式: 当一个函数被保存为对象的一个属性时,我们称它为 ...

  7. Redis(2015.08.03笔记一)

    一.redis简介 Redis是一种面向"键/值"对数据类型的内存数据库,可以满足我们对海量数据的读写需求. redis的键只能是字符串 redis的值支持多种数据类型: 1:字符 ...

  8. iOS开发之视频播放

    1.如何播放视频 iOS提供了MPMoviePlayerController.MPMoviePlayerViewController两个类,可以用来轻松播放视频和网络流媒体\网络音频. 提示:网络音频 ...

  9. yum仓库,RPM打包

    rpm命令: -qa  查看软件包是否被安装 -ivh 安装rpm包 -e 卸载包 -qpl 查看rpm包中有什么东西 -qi 查看软件的详细安装信息:安装路径 安装fpm #FPM是Ruby模块yu ...

  10. xml转义符

    今天在看项目的UrlRewriteFilter(动态url静态化,有利于搜索引擎搜索)的配置文件urlrewrite.xml时,看到了“&”字符,查询之后才知道xml文件中的转义比html中的 ...