Description

如果一个无自环无重边无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌。所谓简单环即不经过重复的结点的环。

现在九条可怜手上有一张无自环无重边的无向连通图,但是她觉得这张图中的边数太少了,所以她想要在图上连上一些新的边。同时为了方便的存储这张无向图,图中的边数又不能太多。经过权衡,她想要加边后得到的图为一棵仙人掌。不难发现合法的加边方案有很多,可怜想要知道总共有多少不同的加边方案。两个加边方案是不同的当且仅当一个方案中存在一条另一个方案中没有的边。

Input

多组数据,第一行输入一个整数T表示数据组数。
每组数据第一行输入两个整数n,m,表示图中的点数与边数。
接下来m行,每行两个整数u,v(1≤u,v≤n,u!=v)表示图中的一条边。保证输入的图联通且没有自环与重边
Sigma(n)<=5*10^5,m<=10^6,1<=m<=n*(n-1)/2

Output

对于每组数据,输出一个整数表示方案数,当然方案数可能很大,请对998244353取模后输出。

Sample Input

2
3 2
1 2
1 3
5 4
1 2
2 3
2 4
1 5

Sample Output

2
8
对于第一组样例合法加边的方案有 {}, {(2,3)},共 2 种。

正解:仙人掌$DP$

这题好难啊。。我看题解都看了好久才看懂。。

先给两个博客:http://blog.csdn.net/akak__ii/article/details/65935711

ljh2000:http://www.cnblogs.com/ljh2000-jump/p/6613829.html

首先特判不是仙人掌的情况,只要判每个点到达根的路径是否大于$2$条就行了。

然后我们可以先把环拆掉,也就是把环边和对应的那个点与它父亲断开,因为环是不会对答案造成贡献的。然后这个仙人掌就会变成一个森林。于是我们就成功地把仙人掌$DP$变成了树形$DP$。我们单独考虑每棵树的答案,乘法原理一下就好。

然后就是对于每棵树统计答案了。

对于一个点$x$,我们设$f[x]$表示$x$这棵子树连边形成仙人掌的方案数。我们发现,可以分为两种情况:

1,$x$这棵子树一定不与祖先连边,这个是根的情况。

2,$x$这棵子树可能与祖先连边,这个是除了根以外其他点的情况。

对于第1种情况,我们把$x$所有的儿子$f[v]$都乘起来,并且我们计算一下$x$的儿子互相连边的情况,再乘起来就行了。

对于$x$的儿子互相连边的情况,我们可以找到一个规律。我们设$g[i]$表示$i$个儿子互相连边的合法方案数,那么$g[i]=g[i-1]+(i-1)*g[i-2]$。

这是怎么来的呢?我们考虑一下,如果第$i$个点不与其他点连边,那么方案数就是$g[i-1]$,否则,第$i$个点与第$j$个点连边,那么第$j$个点肯定不能与其他点连边,所以方案数是$g[i-2]$,总共有$i-1$种情况,所以$g[i]=g[i-1]+(i-1)*g[i-2]$。那么我们设$x$有$tot$个儿子,于是$f[x]=\prod f[v]*g[tot]$。

那么现在我们只要考虑第二种情况了。其实仔细想想,就是$x$的所有儿子$f[v]$相乘,再乘上$g[tot+1]$就行了。因为这就是$tot+1$个点互相连边的情况。于是$f[x]=\prod f[v]*g[tot+1]$。

于是这道题我们就完美地解决了。

 //It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define rhl (998244353)
#define inf (1<<30)
#define M (1000010)
#define N (500010)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct edge{ int nt,to; }G[*M];
struct node{ int i,d; }a[N]; int head[N],fa[N],dfn[N],dep[N],lu[N],n,m,cnt;
ll f[N],g[N],ans; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void insert(RG int from,RG int to){
G[++cnt]=(edge){head[from],to},head[from]=cnt; return;
} il int cmpd(const node &a,const node &b){ return a.d<b.d; } il void pre(){ //预处理g数组
g[]=g[]=;
for (RG int i=;i<=;++i) g[i]=(g[i-]+(i-)*g[i-])%rhl;
return;
} il void dfs(RG int x,RG int p){
fa[x]=p,dfn[x]=++cnt,dep[x]=dep[p]+;
for (RG int i=head[x],v;i;i=G[i].nt){
v=G[i].to; if (dfn[v]) continue;
dfs(v,x);
}
return;
} il void dp(RG int x,RG int rt){
lu[x]=-,f[x]=; RG int tot=,v;
for (RG int i=head[x];i;i=G[i].nt){
v=G[i].to; if (v==fa[x] || lu[v]!=) continue;
tot++; dp(v,); f[x]=f[x]*f[v]%rhl;
}
if (!rt) f[x]=f[x]*g[tot+]%rhl;
else f[x]=f[x]*g[tot]%rhl;
return;
} il void work(){
n=gi(),m=gi(),cnt=;
for (RG int i=;i<=n;++i) lu[i]=fa[i]=dep[i]=dfn[i]=head[i]=;
for (RG int i=,u,v;i<=m;++i) u=gi(),v=gi(),insert(u,v),insert(v,u);
cnt=; dfs(,);
for (RG int i=,u,v;i<=m;++i){ //统计每个点到根的路径数
u=G[i<<].to,v=G[i<<|].to;
if (dfn[u]<dfn[v]) swap(u,v);
while (u!=v){
if (lu[u]==){ printf("0\n"); return; }
lu[u]++,u=fa[u];
}
}
for (RG int i=;i<=n;++i) a[i].i=i,a[i].d=dep[i];
sort(a+,a+n+,cmpd); ans=;
for (RG int i=,x;i<=n;++i){
x=a[i].i; if (lu[x]==-) continue;
dp(x,); ans=ans*f[x]%rhl;
}
printf("%lld\n",ans); return;
} int main(){
File("cactus");
pre(); RG int T=gi();
while (T--) work();
return ;
}

bzoj4784 [Zjoi2017]仙人掌的更多相关文章

  1. [BZOJ4784][ZJOI2017]仙人掌(树形DP)

    4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 312  Solved: 181[Submit][Status] ...

  2. BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)

    首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...

  3. 2019.02.07 bzoj4784: [Zjoi2017]仙人掌(仙人掌+树形dp)

    传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi​表示把iii为根的子树加边形成仙人掌的方案数. ...

  4. 【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)

    [BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙 ...

  5. ●洛谷P3687 [ZJOI2017]仙人掌

    题链: https://www.luogu.org/problemnew/show/P3687题解: 计数DP,树形DP. (首先对于这个图来说,如果初始就不是仙人掌,那么就直接输出0) 然后由于本来 ...

  6. 【做题】ZJOI2017仙人掌——组合计数

    原文链接 https://www.cnblogs.com/cly-none/p/ZJOI2017cactus.html 给出一个\(n\)个点\(m\)条边的无向连通图,求有多少种加边方案,使得加完后 ...

  7. LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】

    题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然 ...

  8. zjoi2017 仙人掌

    题解: 好难的dp啊...看题解看了好久才看懂 http://blog.csdn.net/akak__ii/article/details/65935711 如果一开始的图就不是仙人掌,答案显然为0, ...

  9. 【题解】ZJOI2017仙人掌

    感觉这题很厉害啊,虽然想了一天多但还是失败了……(:д:) 这题首先注意到给定图中如果存在环其实对于答案是没有影响的.然后关键之处就在于两个 \(dp\) 数组,其中 \(f[u]\) 表示以 \(u ...

随机推荐

  1. webpack和webpack-dev-server安装配置(遇到各种问题的解决方法)

    跟着Webpack傻瓜式指南(一)这个教程在安装webpack和webpack-dev-server的时候遇到很多问题,查了很多终于一一找到解决办法. 主要参考了这三篇博文: moudule.js:3 ...

  2. click和onclick本质的区别

    原生javascript的click在w3c里边的阐述是DOM button对象,也是html DOM click() 方法,可模拟在按钮上的一次鼠标单击. button 对象代表 HTML 文档中的 ...

  3. 读headFirst设计模式 - 装饰者模式

    继承可以在复用父类代码的情况下扩展父类的功能,但同时继承增加了对象之间的耦合度,所以要慎用继承.那么有没有既能扩展父类的功能,又能使对象间解耦的方法呢?答案是肯定的,这就是我们今天要学习的装饰者模式. ...

  4. webots自学笔记(五)使用物理插件ODE建立铰链

    原创文章,来自"博客园,_阿龙clliu" http://www.cnblogs.com/clliu/,转载请注明原文章出处. 在一些三维制图软件或仿真软件里,都有运动副的概念,w ...

  5. C# const和readonly修饰符的区别

    const 的概念就是一个包含不能修改的值的变量.常数表达式是在编译时可被完全计算的表达式.因此不能从一个变量中提取的值来初始化常量.如果 const int a = b+1;b是一个变量,显然不能再 ...

  6. cuda学习笔记——deviceQuery

    main(int argc, char **argv):argc是参数个数,**argv具体的参数,第0个是程序全名 cudaError_t类型:记录cuda错误,值为cudaSuccess则正确执行 ...

  7. iOS开发之UINavigationController

    1.概述: 利用UINavigationController,可以轻松地管理多个控制器,轻松完成控制器之间的切换,典型例子就是系统自带的“设置”应用. 2.UINavigationController ...

  8. python3的urllib2报错问题解决方法

    python urlib2 兼容问题 在python3中,将urllib和urllib2合并了,所以在使用urllib2的地方改成urllib.request即可.示例如下 import urllib ...

  9. HTTP协议(二)

    一.请求的格式: (一).请求行 (1).请求方法 1.GET 2.POST 3.PUT 4.DELETE 5.TRACE 6.OPTIONS (2).请求路径 (3).所用的协议 (二).请求头信息 ...

  10. 如何写一手漂亮的 Vue

    前几日听到一句生猛与激励并存,可怕与尴尬同在,最无奈也无解的话:"90后,你的中年危机已经杀到".这令我很受触动.显然,这有些夸张了,但就目前这日复一日的庸碌下去,眨眼的功夫,那情 ...