本人对编程语言实在是一窍不通啊。。。今天看了廖雪峰老师的关于迭代,迭代器,生成器,递归等等,word天,这都什么跟什么啊。。。

1.关于迭代

  如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)(Iteration的中文意思就是:反复、重复、迭代等)。而这些for循环所遍历的对象(list or tuple 等)成为可迭代对象(Iterable)。

  也就是说“迭代”就是一个动作或者过程,可以把list或tuple中的元素一个个检查一遍(遍历)。如下:

 >>> for i in range(0,10):
print (i)

结果会是  0   1 2 3 4  5 6 7 8 9    这个过程就是迭代,而这里的range(0,10)就是可迭代对象(Iterable)。所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

  1.1 判断一个对象是否是可迭代对象

  通过collections模块的Iterable类型来判断:

 >>>from collections import Iterable
>>>isinstance('abc',Iterable) #str 'abc' 是否可迭代(Iterable)
  True
>>>isinstance([1,2,3],Iterable) #list [1,2,3] 是否可迭代(Iterable)
  True
>>>isinstance(123,Iterable) # 整数123 是否可迭代

2.生成器

  在Python中,一边循环一边计算的机制,称为生成器:generator。定义generator有两种方式。

  2.1 定义generator的第一种方法

 >>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

这一种方法很简单,把一个列表生成式[]改成(),就创建了generator。这里创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。如果要一个一个把g里面的元素打印出来,可以通过next()函数获得generator的下一个返回值:

 >>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

 generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。但是,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它:

 >>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81

  2.1 定义generator的第二种方法

第二种方法是通过函数来定义。

著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

 def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b #这里指的是a=b,b=a+b
n = n + 1
return 'done'

我现在才知道为什么要加一个max参数,利用n<max 正好可以使a+b的次数等于输入的max,例如fib(10),那么结束循环的时候a+b正好10次。

测试代码如下:

fib(6):
1
1
2
3
5
8
'done'

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

 def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator

 >>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

 >>> for n in fib(6):
... print(n)
...
1
1
2
3
5
8

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

再看下面这个例子:

 def odd():
print('step 1')
yield 1
print('step 2')
yield(3)
print('step 3')
yield(5)

调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

 >>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

 

python中的迭代、生成器等等的更多相关文章

  1. 为什么for循环可以遍历list:Python中迭代器与生成器

    1 引言 只要你学了Python语言,就不会不知道for循环,也肯定用for循环来遍历一个列表(list),那为什么for循环可以遍历list,而不能遍历int类型对象呢?怎么让一个自定义的对象可遍历 ...

  2. Python中可迭代对象是什么?

    Python中可迭代对象(Iterable)并不是指某种具体的数据类型,它是指存储了元素的一个容器对象,且容器中的元素可以通过__iter__( )方法或__getitem__( )方法访问. __i ...

  3. Python中的迭代是什么意思?

    Python中的迭代是指通过重复执行的代码处理相似的数据集的过程,并且本次迭代的处理数据要依赖上一次的结果继续往下做,上一次产生的结果为下一次产生结果的初始状态,如果中途有任何停顿,都不能算是迭代. ...

  4. python中可迭代对象、迭代器、生成器

    可迭代对象 关注公众号"轻松学编程"了解更多. 1.列表生成式 list = [result for x in range(m, n)] g1 = (i for i in rang ...

  5. Python中的yield生成器的简单介绍

    Python yield 使用浅析(整理自:廖 雪峰, 软件工程师, HP 2012 年 11 月 22 日 ) 初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关 ...

  6. python中的迭代器 生成器 装饰器

    什么迭代器呢?它是一个带状态的对象,他能在你调用next()方法的时候返回容器中的下一个值,任何实现了__iter__和__next__()(python2中实现next())方法的对象都是迭代器,_ ...

  7. Python学习-40.Python中的迭代

    在上一篇中,我们使用了生成器来创建了一个可遍历的对象.在其中,我们使用了yield关键字. Python我也正在学习中,因此对yield的本质我并不熟悉,但是,在C#中,yield关键字则是语法糖,其 ...

  8. python中的迭代与递归

    遇到一个情况,需要进行递归操作,但是呢递归次数非常大,有一万多次.先不说一万多次递归,原来的测试代码是java的,没装jdk和编译环境,还是用python吧 先看下原本的java代码: public ...

  9. python中的迭代

    #迭代Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上. #list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标 ...

随机推荐

  1. How to debug .NET Core RC2 app with Visual Studio Code on Windows?

    Simone Chiaretta (http://codeclimber.net.nz/archive/2016/05/20/How-to-debug-NET-Core-RC2-app-with-Vi ...

  2. [.NET] 开头不讲"Hello Word",读尽诗书也枉然 : Word 操作组件介绍 - Spire.Doc

    开头不讲"Hello Word",读尽诗书也枉然 : Word 操作组件介绍 - Spire.Doc [博主]反骨仔 [原文地址]http://www.cnblogs.com/li ...

  3. HBase框架学习之路

    1 背景知识 1.1 解决问题 解决HDFS不支持单条记录的快速查找和更新的问题. 1.2 适用情况 存在亿万条记录的数据库,只有千万或者百万条记录使用RDBMS更加合适 确保你的应用不需要使用RDB ...

  4. 网站文件系统发展&&分布式文件系统fastDFS

    网站文件系统发展 1.单机时代的图片服务器架构 初创时期由于时间紧迫,开发人员水平也很有限等原因.所以通常就直接在website文件所在的目录下,建立1个upload子目录,用于保存用户上传的图片文件 ...

  5. spring ioc

    spring ioc是spring的核心之一,也是spring体系的基础,那么spring ioc所依赖的底层技术是什么的?反射,以前我们开发程序的时候对象之间的相互调用需要用new来实现,现在所有的 ...

  6. Hive索引功能测试

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 从Hive的官方wiki来看,Hive0.7以后增加了一个对表建立index的功能,想试下性能是 ...

  7. 单链表的C++实现(采用模板类)

    采用模板类实现的好处是,不用拘泥于特定的数据类型.就像活字印刷术,制定好模板,就可以批量印刷,比手抄要强多少倍! 此处不具体介绍泛型编程,还是着重叙述链表的定义和相关操作.  链表结构定义 定义单链表 ...

  8. ASP.NET MVC5学习笔记01

    由于之前在项目中也使用MVC进行开发,但是具体是那个版本就不是很清楚了,但是我觉得大体的思想是相同的,只是版本高的在版本低的基础上增加了一些更加方便操作的东西.下面是我学习ASP.NET MVC5高级 ...

  9. CXF:根据werservice代码生成WSDL(转)

    原文:http://hongyegu.iteye.com/blog/619147,谢谢! import org.apache.cxf.tools.java2ws.JavaToWS; import ne ...

  10. spring源码:Aware接口(li)

    一.spring容器中的aware接口介绍 Spring中提供了各种Aware接口,比较常见的如BeanFactoryAware,BeanNameAware,ApplicationContextAwa ...