TF-卷积函数 tf.nn.conv2d 介绍
转自 http://www.cnblogs.com/welhzh/p/6607581.html
下面是这位博主自己的翻译加上测试心得
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
除去name参数用以指定该操作的name,与方法有关的一共五个参数:
第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是
[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意
这是一个4维的Tensor,要求类型为float32和float64其中之一
第二个参数filter:相当于CNN中的卷积核,
它要求是一个Tensor,具有
[filter_height, filter_width, in_channels, out_channels]这样的shape
,具体含义是[卷积核的高度,
],要求类型与参数input相同,有一个地方需要注意,第三维卷积核的宽度,图像通道数,卷积核个数
,就是参数input的第四维in_channels
第三个参数strides:卷积时在图像每一维的步长,这是一个一维的向量,长度4
第四个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式(后面会介绍)
第五个参数:use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true
结果返回一个Tensor,这个输出,就是我们常说的feature map,shape仍然是
[batch, height, width, channels]
这种形式。
那么TensorFlow的卷积具体是怎样实现的呢,用一些例子去解释它:
1.考虑一种最简单的情况,现在有一张3×3单通道的图像(对应的shape:[1,3,3,1]),用一个1×1的卷积核(
)去做卷积,最后会得到一张3×3的feature map对应的shape:[1,1,1,1]
2.增加图片的通道数,使用
一张3×3五通道的图像
(对应的shape:[1,3,3,5]),
用一个1×1的卷积核(
)去做卷积,仍然是一张3×3对应的shape:[1,1,1,1]
的feature map,这就相当于每一个像素点,卷积核都与该像素点的每一个通道做卷积。
input = tf.Variable(tf.random_normal([1,3,3,5]))
filter = tf.Variable(tf.random_normal([1,1,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')
3.把卷积核扩大,现在用3×3的卷积核做卷积,最后的输出是一个值,相当于情况2的feature map所有像素点的值求和
input = tf.Variable(tf.random_normal([1,3,3,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')
4.使用更大的图片将情况2的图片扩大到5×5,仍然是3×3的卷积核,令步长为1,输出3×3的feature map
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')
注意我们可以把这种情况看成情况2和情况3的中间状态,卷积核以步长1滑动遍历全图,以下x表示的位置,表示卷积核停留的位置,每停留一个,输出feature map的一个像素
.....
.xxx.
.xxx.
.xxx.
.....
5.上面我们一直令参数padding的值为‘VALID’,当其为‘SAME’时,表示卷积核可以停留在图像边缘,如下,输出5×5的feature map
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
6.如果卷积核有多个
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,7])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')
此时输出7张5×5的feature map
7.步长不为1的情况,文档里说了对于图片,因为只有两维,通常strides取[1,stride,stride,1]
input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,7])) op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')
此时,输出7张3×3的feature map
x.x.x
.....
x.x.x
.....
x.x.x
8.如果batch值不为1,同时输入10张图
input = tf.Variable(tf.random_normal([10,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,7])) op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')
每张图,都有7张3×3的feature map,输出的shape就是[10,3,3,7]
最后,把程序总结一下:
结果是这样的:
----------case 2---------
[[[[ 5.]
[ 5.]
[ 5.]]
[[ 5.]
[ 5.]
[ 5.]]
[[ 5.]
[ 5.]
[ 5.]]]]
---------------------
----------case 3---------
[[[[ 45.]]]]
---------------------
----------case 4---------
[[[[ 45.]
[ 45.]
[ 45.]]
[[ 45.]
[ 45.]
[ 45.]]
[[ 45.]
[ 45.]
[ 45.]]]]
---------------------
----------case 5---------
[[[[ 20.]
[ 30.]
[ 30.]
[ 30.]
[ 20.]]
[[ 30.]
[ 45.]
[ 45.]
[ 45.]
[ 30.]]
[[ 30.]
[ 45.]
[ 45.]
[ 45.]
[ 30.]]
[[ 30.]
[ 45.]
[ 45.]
[ 45.]
[ 30.]]
[[ 20.]
[ 30.]
[ 30.]
[ 30.]
[ 20.]]]]
---------------------
----------case 6---------
[[[[ 20. 20. 20. 20. 20. 20. 20.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 20. 20. 20. 20. 20. 20. 20.]]
[[ 30. 30. 30. 30. 30. 30. 30.]
[ 45. 45. 45. 45. 45. 45. 45.]
[ 45. 45. 45. 45. 45. 45. 45.]
[ 45. 45. 45. 45. 45. 45. 45.]
[ 30. 30. 30. 30. 30. 30. 30.]]
[[ 30. 30. 30. 30. 30. 30. 30.]
[ 45. 45. 45. 45. 45. 45. 45.]
[ 45. 45. 45. 45. 45. 45. 45.]
[ 45. 45. 45. 45. 45. 45. 45.]
[ 30. 30. 30. 30. 30. 30. 30.]]
[[ 30. 30. 30. 30. 30. 30. 30.]
[ 45. 45. 45. 45. 45. 45. 45.]
[ 45. 45. 45. 45. 45. 45. 45.]
[ 45. 45. 45. 45. 45. 45. 45.]
[ 30. 30. 30. 30. 30. 30. 30.]]
[[ 20. 20. 20. 20. 20. 20. 20.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 20. 20. 20. 20. 20. 20. 20.]]]]
---------------------
----------case 7---------
[[[[ 20. 20. 20. 20. 20. 20. 20.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 20. 20. 20. 20. 20. 20. 20.]]
[[ 30. 30. 30. 30. 30. 30. 30.]
[ 45. 45. 45. 45. 45. 45. 45.]
[ 30. 30. 30. 30. 30. 30. 30.]]
[[ 20. 20. 20. 20. 20. 20. 20.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 20. 20. 20. 20. 20. 20. 20.]]]]
---------------------
----------case 8---------
[[[[ 20. 20. 20. 20. 20. 20. 20.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 20. 20. 20. 20. 20. 20. 20.]]
[[ 30. 30. 30. 30. 30. 30. 30.]
[ 45. 45. 45. 45. 45. 45. 45.]
[ 30. 30. 30. 30. 30. 30. 30.]]
[[ 20. 20. 20. 20. 20. 20. 20.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 20. 20. 20. 20. 20. 20. 20.]]]
[[[ 20. 20. 20. 20. 20. 20. 20.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 20. 20. 20. 20. 20. 20. 20.]]
[[ 30. 30. 30. 30. 30. 30. 30.]
[ 45. 45. 45. 45. 45. 45. 45.]
[ 30. 30. 30. 30. 30. 30. 30.]]
[[ 20. 20. 20. 20. 20. 20. 20.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 20. 20. 20. 20. 20. 20. 20.]]]
[[[ 20. 20. 20. 20. 20. 20. 20.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 20. 20. 20. 20. 20. 20. 20.]]
[[ 30. 30. 30. 30. 30. 30. 30.]
[ 45. 45. 45. 45. 45. 45. 45.]
[ 30. 30. 30. 30. 30. 30. 30.]]
[[ 20. 20. 20. 20. 20. 20. 20.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 20. 20. 20. 20. 20. 20. 20.]]]
[[[ 20. 20. 20. 20. 20. 20. 20.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 20. 20. 20. 20. 20. 20. 20.]]
[[ 30. 30. 30. 30. 30. 30. 30.]
[ 45. 45. 45. 45. 45. 45. 45.]
[ 30. 30. 30. 30. 30. 30. 30.]]
[[ 20. 20. 20. 20. 20. 20. 20.]
[ 30. 30. 30. 30. 30. 30. 30.]
[ 20. 20. 20. 20. 20. 20. 20.]]]]
---------------------
TF-卷积函数 tf.nn.conv2d 介绍的更多相关文章
- 第三节,TensorFlow 使用CNN实现手写数字识别(卷积函数tf.nn.convd介绍)
上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即 ...
- tensorflow学习之tf.truncated_normal和tf.random_noraml的区别
tf版本1.13.1,CPU 最近在tf里新学了一个函数,一查发现和tf.random_normal差不多,于是记录一下.. 1.首先是tf.truncated_normal函数 tf.truncat ...
- tf.nn.conv2d。卷积函数
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
- 小记tensorflow-1:tf.nn.conv2d 函数介绍
tf.nn.conv2d函数介绍 Input: 输入的input必须为一个4d tensor,而且每个input的格式必须为float32 或者float64. Input=[batchsize,im ...
- tf.nn.conv2d卷积函数之图片轮廓提取
一.tensorflow中二维卷积函数的参数含义:def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_for ...
- tf.nn.conv2d函数和tf.nn.max_pool函数介绍
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 介绍参数: input:指卷积需要输入的 ...
- tf.nn.conv2d 参数介绍
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
- tf入门-tf.nn.conv2d是怎样实现卷积的?
转自:https://blog.csdn.net/mao_xiao_feng/article/details/78004522 实验环境:tensorflow版本1.2.0,python2.7 介绍 ...
- 【TensorFlow】tf.nn.conv2d是怎样实现卷积的?
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
随机推荐
- 客户端 未登录页面 (clearfix 分割线)
做了一个手机客户端页面,未登录的状态页面 类似 如上图所示 这样 上面列表采取80%宽度,右侧浮动.ul li设置绝对定位.左边icon图标采取决定定位. 为了防止小屏幕手机左边空白缝隙过小,事先给外 ...
- MySQL 行锁 表锁机制
MySQL 表锁和行锁机制 行锁变表锁,是福还是坑?如果你不清楚MySQL加锁的原理,你会被它整的很惨!不知坑在何方?没事,我来给你们标记几个坑.遇到了可别乱踩.通过本章内容,带你学习MySQL的行锁 ...
- [Spark内核] 第33课:Spark Executor内幕彻底解密:Executor工作原理图、ExecutorBackend注册源码解密、Executor实例化内幕、Executor具体工作内幕
本課主題 Spark Executor 工作原理图 ExecutorBackend 注册源码鉴赏和 Executor 实例化内幕 Executor 具体是如何工作的 [引言部份:你希望读者看完这篇博客 ...
- C#互操作处理(一)
C#互操作的类型基本位于System.Runtime.InteropServices命名空间下,本系列随笔主要记录本人在开发过程中使用的到一些类型函数.技巧及工具 计算类型的大小 int size = ...
- CSS中的块级元素(block)与行内元素(inline)
css中有3种基本的定位机制:普通流(相对定位实际上看做普通流定位模型的一部分)浮动(float)绝对定位(固定定位是绝对定位的一种)所以在学习浮动之前,我们先要了解块级元素与内联元素(行内元素).块 ...
- 从Unity中的Attribute到AOP(八)
本文将讲一下在UnityEditor命名空间下的一些特性. CallBackOrder,这个Attribute是所有带callback index的Attribute的基类,由于官方也没有给出详细的说 ...
- 连接WiFi工具类
public class WifiConnect { WifiManager wifiManager; // 构造函数 public WifiConnect(WifiManager wifiManag ...
- SQL数据开发(经典) 基本操作
数据开发(经典) 1.按姓氏笔画排序: Select * From TableName Order By CustomerName Collate Chinese_PRC_Str oke_ci_as ...
- centos7配置阿里云yum源
1)下载repo文件 wget http://mirrors.aliyun.com/repo/Centos-7.repo 2)备份并替换系统的repo文件 cp Centos-7.repo /etc/ ...
- CSS颜色渐变
一. Webkit浏览器 (1) 第一种写法: background:-webkit-gradient(linear ,10% 10%,100% 100%, color-stop(0.14,rgb(2 ...