[笔记]NumPy基础操作
学机器学习做点小笔记,都是Python的NumPy库的基本小操作,图书馆借的书看到的,怕自己还了书后忘了,就记下来。
一般习惯导入numpy时使用 import numpy as np
,不要直接import,会有命名空间冲突。比如numpy的array和python自带的array。
numpy下有两个可以做矩阵的东西,一个叫matrix,一个叫array。matrix指定是二维矩阵,array任意维度,所以matrix是array的分支,但是这个matrix和matlab的矩阵很像,操作也很像:
>>> import numpy as np
>>> a=np.mat('4 3; 2 1') # 使用字符串来初始化
>>> b=np.mat('1 2; 3 4')
>>> a
matrix([[4, 3],
[2, 1]])
>>> b
matrix([[1, 2],
[3, 4]])
>>> a+b # 对应位置相加
matrix([[5, 5],
[5, 5]])
>>> a*b # 矩阵乘法,与matlab相同
matrix([[13, 20],
[ 5, 8]])
>>> np.multiply(a,b) # 对应位置乘法,相当于matlab的点乘 “.*”
matrix([[4, 6],
[6, 4]])
而重点讲讲np.array。
np.array操作
首先是初始化与属性查看
>>> import numpy as np
>>> np.arange(10) # 从零生成到10-1的一维矩阵
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a=np.array([0,1,2,3,4,5]) # 因为支持多维,所以用数组来初始化
>>> a
array([0, 1, 2, 3, 4, 5])
>>> a.ndim # 查看维度
1
>>> a.shape # 查看矩阵形状尺寸
(6,)
>>> a.dtype # 查看类型
dtype('int32')
reshape改变矩阵形状,可以改变维度,但是reshape后的数据还是共享原来那一份数据
>>> b=a.reshape(3,2)
>>> b
array([[0, 1],
[2, 3],
[4, 5]])
>>> b.ndim
2
>>> b.shape
(3, 2)
>>> b[1][0]=77
>>> b
array([[ 0, 1],
[77, 3],
[ 4, 5]])
>>> a
array([ 0, 1, 77, 3, 4, 5]) # 可见b和a其实用的同一个数据
因而要产生的新矩阵不再关联,要使用copy():
>>> c=a.reshape(3,2).copy()
>>> c
array([[ 0, 1],
[77, 3],
[ 4, 5]])
>>> c[0][0]=233
>>> a
array([ 0, 1, 77, 3, 4, 5])
>>> c
array([[233, 1],
[ 77, 3],
[ 4, 5]])
array的运算:
>>> d=np.array([1,2,3,4,5]) # 一维矩阵运算
>>> d.T # 转置矩阵
array([1, 2, 3, 4, 5])
>>> d*2 # 每个数据乘以2
array([ 2, 4, 6, 8, 10])
>>> d**2 # 每个数据二次方
array([ 1, 4, 9, 16, 25])
>>> d*d # 按位置乘,与“d**2”等效,和mat正好相反
array([ 1, 4, 9, 16, 25])
>>> d.dot(d) # 矩阵乘法,和mat相反
55
>>> x=np.array([[1,2],[3,4],[5,6]]) # 二维矩阵运算
>>> y=np.array([[6,5,4],[3,2,1]])
>>> x
array([[1, 2],
[3, 4],
[5, 6]])
>>> y
array([[6, 5, 4],
[3, 2, 1]])
>>> x.dot(y) # 二维矩阵矩阵乘法
array([[12, 9, 6],
[30, 23, 16],
[48, 37, 26]])
>>> x= x.reshape(2,3)
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> x*y # 按位置乘,要求两个矩阵shape相同
array([[ 6, 10, 12],
[12, 10, 6]])
>>> x.T # 二维矩阵的转置矩阵
array([[1, 4],
[2, 5],
[3, 6]])
>>> x.mean() # 求平均值
3.5
关于下标的运算:(这些挺有意思的)
>>> a=np.array([5,4,3,233,9])
>>> a[np.array([2,4,3])] # 列出对应下标的数值
array([ 3, 9, 233])
>>> a>4
array([ True, False, False, True, True], dtype=bool)
>>> a[a>4]
array([ 5, 233, 9])
>>> a[a>8]=8
>>> a
array([5, 4, 3, 8, 8])
>>> a.clip(4,5) # 限定所有数据范围
array([5, 4, 4, 5, 5])
还有一个关于nan的
>>> a=np.array([1,2,0,3,4])
>>> a
array([1, 2, 0, 3, 4])
>>> b=np.array([1,2,np.NAN,3,4])
>>> b
array([ 1., 2., nan, 3., 4.]) # 和a不同,虽然只改了一个nan,b每个数据后面有个“.”,说明变成float型了,说明nan其实是个float
>>> np.isnan(b)
array([False, False, True, False, False], dtype=bool)
>>> b[~np.isnan(b)]
array([ 1., 2., 3., 4.])
与系统自带array的差异
array的乘法
>>> [1,2,3,4,5]*2
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
>>> [1,2,3,4,5]**2
(报错)
运行时间
对array和np.array进行按元素平方并求和的运算,运算3000次统计时间。
>>> timeit.timeit('sum(x*x for x in range(1000))',number=3000)
0.31559807779291305
>>> timeit.timeit('sum(na*na)', setup='import numpy as np; na=np.arange(1000)',number=3000)
0.37785958035067324
>>> timeit.timeit('na.dot(na)', setup='import numpy as np; na=np.arange(1000)',number=3000)
0.0069067372806728144
惊奇的发现系统级的array求和比np.array还快,说明np.array单个数据的访问还是比array较慢。但是用了矩阵乘法后,虽然效果一样,但这个速度就飞起来了。
[笔记]NumPy基础操作的更多相关文章
- [学习笔记] Numpy基础 系统学习
[学习笔记] Numpy基础 上专业选修<数据分析程序设计>课程,老师串讲了Numpy基础,边听边用jupyter敲了下--理解+笔记. 老师讲的很全很系统,有些点没有记录,在PPT里就不 ...
- numpy 基础操作
Numpy 基础操作¶ 以numpy的基本数据例子来学习numpy基本数据处理方法 主要内容有: 创建数组 数组维度转换 数据选区和切片 数组数据计算 随机数 数据合并 数据统计计算 In [1]: ...
- 笔记-flask基础操作
笔记-flask基础操作 1. 前言 本文为flask基础学习及操作笔记,主要内容为flask基础操作及相关代码. 2. 开发环境配置 2.1. 编译环境准备 安装相关Lib ...
- NumPy基础操作
NumPy基础操作(1) (注:记得在文件开头导入import numpy as np) 目录: 数组的创建 强制类型转换与切片 布尔型索引 结语 数组的创建 相关函数 np.array(), np. ...
- NumPy基础操作(3)——代数运算和随机数
NumPy基础操作(3)--代数运算和随机数 (注:记得在文件开头导入import numpy as np) 目录: NumPy在矩阵运算中的应用 常用矩阵运算函数介绍 编程实现 利用NumPy生成随 ...
- NumPy基础操作(2)
NumPy基础操作(2) (注:记得在文件开头导入import numpy as np) 目录: 写在前面 转置和轴对换 NumPy常用函数 写在前面 本篇博文主要讲解了普通转置array.T.轴对换 ...
- C#基础随手笔记之基础操作优化
对数据的查询,删除等基本操作是任何编程语言都会涉及到的基础,因此,研究了一下C#中比较常用的数据操作类型,并顺手做个笔记. List查询时,若是处理比较大的数据则使用HashSet<T>类 ...
- [SQL] SQL学习笔记之基础操作
1 SQL介绍 SQL 是用于访问和处理数据库的标准的计算机语言.关于SQL的具体介绍,我们通过回答如下三个问题来进行. SQL 是什么? SQL,指结构化查询语言,全称是 Structured Qu ...
- 学习Numpy基础操作
# coding:utf-8 import numpy as np from numpy.linalg import * def day1(): ''' ndarray :return: ''' ls ...
随机推荐
- Alamofire源码解读系列(九)之响应封装(Response)
本篇主要带来Alamofire中Response的解读 前言 在每篇文章的前言部分,我都会把我认为的本篇最重要的内容提前讲一下.我更想同大家分享这些顶级框架在设计和编码层次究竟有哪些过人的地方?当然, ...
- 如何进行SQL性能优化
在SQL查询中,为了提高查询的效率,我们常常采取一些措施对查询语句进行SQL性能优化.本文我们总结了一些优化措施,接下来我们就一一介绍. 1.查询的模糊匹配 尽量避免在一个复杂查询里面使用 LIKE ...
- Memcache存储机制与指令汇总
1.memcache基本简介 memcached是高性能的分布式内存缓存服务器.一般的使用目的是,通过缓存数据库查询结果,减少数据库访问次数,以提高动态Web应用的速度.提高可扩展性. Memcach ...
- Spring+SpringMVC+MyBatis+easyUI整合优化篇(四)单元测试实例
日常啰嗦 前一篇文章<Spring+SpringMVC+MyBatis+easyUI整合优化篇(三)代码测试>讲了不为和不能两个状态,针对不为,只能自己调整心态了,而对于不能,本文会结合一 ...
- 存储linux RAID6被重建成RAID5的数据恢复解决方案
数据恢复故障描述:原存储为12块2T硬盘组成的Linux RAID6,文件系统均为EXT3,此存储上划有3个LUN,每个均为6TB大小,某天在RAID失效后,维护人员为了抢救数据,对此失效的存储重进行 ...
- 【Android 系统开发】CyanogenMod 13.0 源码下载 编译 ROM 制作 ( 手机平台 : 小米4 | 编译平台 : Ubuntu 14.04 LTS 虚拟机)
分类: Android 系统开发(5) 作者同类文章X 版权声明:本文为博主原创文章 ...
- Snapman设计中的思考
Snapman主页:http://www.snapman.xyz 原文链接地址:http://www.snapman.xyz/newsitem/277785310 feiren工作室主要研究人类 ...
- Hibernate(二)之Hibernate-api详解
一.Hibernate体系结构 二.Hibernate-api详解 2.1.Configuration配置对象 Configuration是用来加载配置文件的 我们Hibernate中主要有两个配置文 ...
- 变态版大鱼吃小鱼-基于pixi.js 2D游戏引擎
之前用CSS3画了一条
- 在IntelliJ IDEA中添加repository模板
可以用于快速新建一个repository类,减少开发时间 在IntelliJ IDEA settings设置中(ctrl+alt+s)--Editor--File and Code Templates ...