1 YCbCr简介
YCbCr颜色空间是将RGB颜色空间进行坐标转换后得到的,常用于数字电视系统。
Y取值范围:16~235
Cb、Cr的取值范围:16~240
YCbCr经常和YUV混淆。两者的主要差别在于YUV是模拟信号,YCbCr是数字信号。
2 YCbCr与RGB的转换公式
因为SDTV(标清视频)和HDTV(高清视频)应用具有不同的色度特征,所以对于RGB和YCbCr之间的转换的公式,分两种情况进行说明:
对于SDTV(包括480i 576i),对应的标准是ITU-R BT.601:

对于HDTV(包括720P 1080i 1080P),对应的标准是ITU BT.709:

3 YCbCr转RGB的verilog源码
/*
计算公式: R = 1.164(Y - 16) + 1.793(CR - 128) = 1.164Y + 1.793CR - 248.128;
G = 1.164(Y - 16) - 0.534(CR - 128) - 0.213(CB - 128) = 1.164Y - 0.213CB - 0.534CR + 76.992;
B = 1.164(Y - 16) + 2.115(CB - 128) = 1.164Y + 2.115CB - 289.344;
其中,时序在计算过程中完全没有用到
输入到输出有三个clock的时延。
第一级流水线计算所有乘法;
第二级流水线计算所有加法,把正的和负的分开进行加法;
第三级流水线计算最终的和,若为负数取0;
仿真通过
*/
`timescale 1ns/1ps
module ycbcr_to_rgb(
input clk,
input wire[7 : 0] i_y_8b,
input wire[7 : 0] i_cb_8b,
input wire[7 : 0] i_cr_8b,

input i_h_sync,
input i_v_sync,
input i_data_en,

output wire[7 : 0] o_r_8b,
output wire[7 : 0] o_g_8b,
output wire[7 : 0] o_b_8b,

output reg o_h_sync,
output reg o_v_sync,
output reg o_data_en
);

/***************************************parameters*******************************************/
//multiply 256
parameter para_1164_10b = 10'd297; //1.160
parameter para_1793_10b = 10'd459; //1.793
parameter para_0534_10b = 10'd137; //0.535
parameter para_0213_10b = 10'd54; //0.211
parameter para_2115_10b = 10'd541; //2.113
parameter para_248128_18b = 18'd63521;//248.128
parameter para_76992_18b = 18'd19710; //76.992
parameter para_289344_18b = 18'd74072;//289.344
/********************************************************************************************/

/***************************************signals**********************************************/
wire sign_r;
wire sign_g;
wire sign_b;
reg[17 : 0] mult_y_for_r_18b;
reg[17 : 0] mult_y_for_g_18b;
reg[17 : 0] mult_y_for_b_18b;

reg[17 : 0] mult_cb_for_g_18b;
reg[17 : 0] mult_cb_for_b_18b;

reg[17 : 0] mult_cr_for_r_18b;
reg[17 : 0] mult_cr_for_g_18b;

reg[17 : 0] add_r_0_18b;
reg[17 : 0] add_g_0_18b;
reg[17 : 0] add_b_0_18b;

reg[17 : 0] add_r_1_18b;
reg[17 : 0] add_g_1_18b;
reg[17 : 0] add_b_1_18b;

reg[17 : 0] result_r_18b;
reg[17 : 0] result_g_18b;
reg[17 : 0] result_b_18b;

reg i_h_sync_delay_1;
reg i_v_sync_delay_1;
reg i_data_en_delay_1;

reg i_h_sync_delay_2;
reg i_v_sync_delay_2;
reg i_data_en_delay_2;

/********************************************************************************************/

/***************************************initial**********************************************/
initial
begin
mult_y_for_r_18b <= 18'd0;
mult_y_for_g_18b <= 18'd0;
mult_y_for_b_18b <= 18'd0;

mult_cb_for_g_18b <= 18'd0;
mult_cb_for_b_18b <= 18'd0;

mult_cr_for_r_18b <= 18'd0;
mult_cr_for_g_18b <= 18'd0;

add_r_0_18b <= 18'd0;
add_g_0_18b <= 18'd0;
add_b_0_18b <= 18'd0;

add_r_1_18b <= 18'd0;
add_g_1_18b <= 18'd0;
add_b_1_18b <= 18'd0;

result_r_18b <= 18'd0;
result_g_18b <= 18'd0;
result_b_18b <= 18'd0;

i_h_sync_delay_1 <= 1'd0;
i_v_sync_delay_1 <= 1'd0;
i_data_en_delay_1 <= 1'd0;

i_h_sync_delay_2 <= 1'd0;
i_v_sync_delay_2 <= 1'd0;
i_data_en_delay_2 <= 1'd0;

o_h_sync <= 1'd0;
o_v_sync <= 1'd0;
o_data_en <= 1'd0;
end
/********************************************************************************************/

/***************************************arithmetic*******************************************/
//LV1 pipeline : mult
always @ (posedge clk)
begin
mult_y_for_r_18b <= i_y_8b * para_1164_10b;
mult_y_for_g_18b <= i_y_8b * para_1164_10b;
mult_y_for_b_18b <= i_y_8b * para_1164_10b;
end

always @ (posedge clk)
begin
mult_cb_for_g_18b <= i_cb_8b * para_0213_10b;
mult_cb_for_b_18b <= i_cb_8b * para_2115_10b;
end

always @ (posedge clk)
begin
mult_cr_for_r_18b <= i_cr_8b * para_1793_10b;
mult_cr_for_g_18b <= i_cr_8b * para_0534_10b;
end
//LV2 pipeline : add
always @ (posedge clk)
begin
add_r_0_18b <= mult_y_for_r_18b + mult_cr_for_r_18b;
add_r_1_18b <= para_248128_18b;
add_g_0_18b <= mult_y_for_g_18b + para_76992_18b;
add_g_1_18b <= mult_cb_for_g_18b + mult_cr_for_g_18b;
add_b_0_18b <= mult_y_for_b_18b + mult_cb_for_b_18b;
add_b_1_18b <= para_289344_18b;
end
//LV3 pipeline : y + cb + cr
assign sign_r = (add_r_0_18b >= add_r_1_18b);
assign sign_g = (add_g_0_18b >= add_g_1_18b);
assign sign_b = (add_b_0_18b >= add_b_1_18b);
always @ (posedge clk)
begin
result_r_18b = sign_r ? (add_r_0_18b - add_r_1_18b) : 18'd0;
result_g_18b = sign_g ? (add_g_0_18b - add_g_1_18b) : 18'd0;
result_b_18b = sign_b ? (add_b_0_18b - add_b_1_18b) : 18'd0;
end

//output
assign o_r_8b = (result_r_18b[17:16] == 2'b00) ? result_r_18b[15 : 8] : 8'hff;
assign o_g_8b = (result_g_18b[17:16] == 2'b00) ? result_g_18b[15 : 8] : 8'hff;
assign o_b_8b = (result_b_18b[17:16] == 2'b00) ? result_b_18b[15 : 8] : 8'hff;
/********************************************************************************************/

/***************************************timing***********************************************/
always @ (posedge clk)
begin
i_h_sync_delay_1 <= i_h_sync;
i_v_sync_delay_1 <= i_v_sync;
i_data_en_delay_1 <= i_data_en;

i_h_sync_delay_2 <= i_h_sync_delay_1;
i_v_sync_delay_2 <= i_v_sync_delay_1;
i_data_en_delay_2 <= i_data_en_delay_1;

o_h_sync <= i_h_sync_delay_2;
o_v_sync <= i_v_sync_delay_2;
o_data_en <= i_data_en_delay_2;
end
/********************************************************************************************/
endmodule
4 RGB转YCbCr的verilog源码
/*
计算公式: Y = 0.183R + 0.614G + 0.062B + 16;
CB = -0.101R - 0.338G + 0.439B + 128;
CR = 0.439R - 0.399G - 0.040B + 128;
其中,时序在计算过程中完全没有用到
输入到输出有三个clock的时延。
第一级流水线计算所有乘法;
第二级流水线计算所有加法,把正的和负的分开进行加法;
第三级流水线计算最终的和,若为负数取0;
仿真通过
*/
`timescale 1ns/1ps
module rgb_to_ycbcr(
input clk,
input wire[7 : 0] i_r_8b,
input wire[7 : 0] i_g_8b,
input wire[7 : 0] i_b_8b,

input wire i_h_sync,
input wire i_v_sync,
input wire i_data_en,
input i_de_vld,

output wire[7 : 0] o_y_8b,
output wire[7 : 0] o_cb_8b,
output wire[7 : 0] o_cr_8b,

output reg o_h_sync,
output reg o_v_sync,
output reg o_data_en,
output reg o_de_vld
);

/***************************************parameters*******************************************/
//multiply 256
parameter para_0183_10b = 10'd47;
parameter para_0614_10b = 10'd157;
parameter para_0062_10b = 10'd16;
parameter para_0101_10b = 10'd26;
parameter para_0338_10b = 10'd86;
parameter para_0439_10b = 10'd112;
parameter para_0399_10b = 10'd102;
parameter para_0040_10b = 10'd10;
parameter para_16_18b = 18'd4096;
parameter para_128_18b = 18'd32768;
/********************************************************************************************/

/***************************************signals**********************************************/
wire sign_cb;
wire sign_cr;
reg[17: 0] mult_r_for_y_18b;
reg[17: 0] mult_r_for_cb_18b;
reg[17: 0] mult_r_for_cr_18b;

reg[17: 0] mult_g_for_y_18b;
reg[17: 0] mult_g_for_cb_18b;
reg[17: 0] mult_g_for_cr_18b;

reg[17: 0] mult_b_for_y_18b;
reg[17: 0] mult_b_for_cb_18b;
reg[17: 0] mult_b_for_cr_18b;

reg[17: 0] add_y_0_18b;
reg[17: 0] add_cb_0_18b;
reg[17: 0] add_cr_0_18b;

reg[17: 0] add_y_1_18b;
reg[17: 0] add_cb_1_18b;
reg[17: 0] add_cr_1_18b;

reg[17: 0] result_y_18b;
reg[17: 0] result_cb_18b;
reg[17: 0] result_cr_18b;

reg i_h_sync_delay_1;
reg i_v_sync_delay_1;
reg i_data_en_delay_1;
reg i_de_vld_delay_1;

reg i_h_sync_delay_2;
reg i_v_sync_delay_2;
reg i_data_en_delay_2;
reg i_de_vld_delay_2;

/********************************************************************************************/

/***************************************initial**********************************************/
initial
begin
mult_r_for_y_18b <= 18'd0;
mult_r_for_cb_18b <= 18'd0;
mult_r_for_cr_18b <= 18'd0;

mult_g_for_y_18b <= 18'd0;
mult_g_for_cb_18b <= 18'd0;
mult_g_for_cr_18b <= 18'd0;

mult_b_for_y_18b <= 18'd0;
mult_g_for_cb_18b <= 18'd0;
mult_b_for_cr_18b <= 18'd0;

add_y_0_18b <= 18'd0;
add_cb_0_18b <= 18'd0;
add_cr_0_18b <= 18'd0;

add_y_1_18b <= 18'd0;
add_cb_1_18b <= 18'd0;
add_cr_1_18b <= 18'd0;

result_y_18b <= 18'd0;
result_cb_18b <= 18'd0;
result_cr_18b <= 18'd0;

i_h_sync_delay_1 <= 1'd0;
i_v_sync_delay_1 <= 1'd0;
i_data_en_delay_1 <= 1'd0;

i_h_sync_delay_2 <= 1'd0;
i_v_sync_delay_2 <= 1'd0;
i_data_en_delay_2 <= 1'd0;

o_h_sync <= 1'd0;
o_v_sync <= 1'd0;
o_data_en <= 1'd0;
end
/********************************************************************************************/

/***************************************arithmetic*******************************************/
//LV1 pipeline : mult
always @ (posedge clk)
begin
mult_r_for_y_18b <= i_r_8b * para_0183_10b;
mult_r_for_cb_18b <= i_r_8b * para_0101_10b;
mult_r_for_cr_18b <= i_r_8b * para_0439_10b;
end

always @ (posedge clk)
begin
mult_g_for_y_18b <= i_g_8b * para_0614_10b;
mult_g_for_cb_18b <= i_g_8b * para_0338_10b;
mult_g_for_cr_18b <= i_g_8b * para_0399_10b;
end

always @ (posedge clk)
begin
mult_b_for_y_18b <= i_b_8b * para_0062_10b;
mult_b_for_cb_18b <= i_b_8b * para_0439_10b;
mult_b_for_cr_18b <= i_b_8b * para_0040_10b;
end
//LV2 pipeline : add
always @ (posedge clk)
begin
add_y_0_18b <= mult_r_for_y_18b + mult_g_for_y_18b;
add_y_1_18b <= mult_b_for_y_18b + para_16_18b;

add_cb_0_18b <= mult_b_for_cb_18b + para_128_18b;
add_cb_1_18b <= mult_r_for_cb_18b + mult_g_for_cb_18b;

add_cr_0_18b <= mult_r_for_cr_18b + para_128_18b;
add_cr_1_18b <= mult_g_for_cr_18b + mult_b_for_cr_18b;
end
//LV3 pipeline : y + cb + cr

assign sign_cb = (add_cb_0_18b >= add_cb_1_18b);
assign sign_cr = (add_cr_0_18b >= add_cr_1_18b);
always @ (posedge clk)
begin
result_y_18b = add_y_0_18b + add_y_1_18b;
result_cb_18b = sign_cb ? (add_cb_0_18b - add_cb_1_18b) : 18'd0;
result_cr_18b = sign_cr ? (add_cr_0_18b - add_cr_1_18b) : 18'd0;
end

//output
assign o_y_8b = (result_y_18b[17:16] == 2'b00) ? result_y_18b[15 : 8] : 8'hFF;
assign o_cb_8b = (result_cb_18b[17:16] == 2'b00) ? result_cb_18b[15 : 8] : 8'hFF;
assign o_cr_8b = (result_cr_18b[17:16] == 2'b00) ? result_cr_18b[15 : 8] : 8'hFF;
/********************************************************************************************/

/***************************************timing***********************************************/
always @ (posedge clk)
begin
i_h_sync_delay_1 <= i_h_sync;
i_v_sync_delay_1 <= i_v_sync;
i_data_en_delay_1 <= i_data_en;
i_de_vld_delay_1 <=i_de_vld;

i_h_sync_delay_2 <= i_h_sync_delay_1;
i_v_sync_delay_2 <= i_v_sync_delay_1;
i_data_en_delay_2 <= i_data_en_delay_1;
i_de_vld_delay_2 <=i_de_vld_delay_1;

o_h_sync <= i_h_sync_delay_2;
o_v_sync <= i_v_sync_delay_2;
o_data_en <= i_data_en_delay_2;
o_de_vld <= i_de_vld_delay_2;
end
/********************************************************************************************/
endmodule

感谢阅读。转载请注明出处。如有错误之处,请联系donglooloo@163.com   多谢。

参考文档:
1、https://en.wikipedia.org/wiki/YCbCr
2、视频技术手册第五版

[#1] YCbCr与RGB的转换公式的更多相关文章

  1. YUV与RGB互转各种公式 (YUV与RGB的转换公式有很多种,请注意区别!!!)

    一. 公式:基于BT.601-6 BT601 UV 的坐标图(量化后): (横坐标为u,纵坐标为v,左下角为原点) 通过坐标图我们可以看到UV并不会包含整个坐标系,而是呈一个旋转了一定角度的八边形, ...

  2. YCbCr;YUV;RGB

    1.  来源的差异 yuv色彩模 型来源于rgb模型,该模型的特点是将亮度和色度分离开,从而适合于图像处理领域. 应用:basic color model used in analogue color ...

  3. YCbCr to RGB and RGB toYCbCr

    RGB => YCbCr: Y = 0.299R + 0.587G + 0.114BCb = -0.1726R - 0.3388G + 0.5114B + 128Cr = 0.5114R - 0 ...

  4. 视频图像处理基础知识5(RGB与Ycbcr相互转换公式 )【转】

    转自:http://blog.csdn.net/Times_poem/article/details/51471438 版权声明:本文为博主原创文章,未经博主允许不得转载. 需求说明:视频处理算法基本 ...

  5. RGB与HSV之间的转换公式及颜色表

    RGB & HSV 英文全称 RGB - Red, Green, Blue HSV - Hue, Saturation, Value HSV --> RGB 转换公式 HSV --> ...

  6. YCbCr 编码格式(YUV)---转自Crazy Bingo的博客

    YCbCr是DVD.摄像机.数字电视等消费类视频产品中,常用的色彩编码方案. YCbCr 有时会称为 YCC..Y'CbCr 在模拟分量视频(analog component video)中也常被称为 ...

  7. YUV YCbCr

    一,介绍 YUV是一种颜色空间 其中“Y”表示明亮度(Luminance或Luma),也就是灰阶值: 而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和 ...

  8. YUV到RGB的转换

    以下内容来源于网络,下面三个链接里的内容是比较好的,感谢博主的分享. http://blog.csdn.net/housisong/article/details/1859084 http://blo ...

  9. YUV和RGB格式分析

    做嵌入式项目的时候,涉及到YUV视频格式到RGB图像的转换,虽然之前有接触到RGB到都是基于opencv的处理,很多东西并不需要我们过多深入的去探讨,现在需要完全抛弃现有的算法程序,需要从内存中一个字 ...

随机推荐

  1. 【集美大学1411_助教博客】团队作业1——团队展示&选题 成绩

    第一次团队作业已经新鲜出炉啦,各位同学请查收.截止日期前,全班都按时提交了作业,而且有的团队还提交了两次呢,下次不要这样啦~ 题目 团队作业1--团队展示&选题 回顾 个人作业1--四则运算题 ...

  2. 【Alpha阶段】第一次Scrum Meeting!

    每日任务 1.本次会议为第一次 Meeting会议: 2.本次会议在中午12:30,在第五社区5号楼楼下,召开本次会议为30分钟讨论接下来的任务: 一.今日站立式会议照片 二.每个人的工作 (有wor ...

  3. 201521123072《java程序设计》第五周学习总结

    201521123072<java程序设计>第五周学习总结 标签(空格分隔): java学习 1. 本周学习总结 1.1 尝试使用思维导图总结有关多态与接口的知识点. 2. 书面作业 代码 ...

  4. 201521123055 《Java程序设计》第4周学习总结

    1. 本章学习总结 2. 书面 Q1.注释的应用使用类的注释与方法的注释为前面编写的类与方法进行注释,并在Eclipse中查看.(截图) Q2.面向对象设计 2.1 将在网上商城购物或者在班级博客进行 ...

  5. 201521123053《Java程序设计》第四周总结

    1. 本周学习总结 1.1 尝试使用思维导图总结有关继承的知识点. 1.2 使用常规方法总结其他上课内容. 现在上课跟着老师的思路走,一般都能理解了.就是课上知识点有些难以记住. 特别讲讲这个思维导图 ...

  6. 201521123030《Java程序设计》第1周学习总结

    #1. 本章学习总结 你对于本章知识的学习总结 了解了java的发展简介 认识了jvm/jre/jdk的联系,学习安装jdk java好麻烦的说... 1.为什么java程序可以跨平台运行?执行jav ...

  7. vbs文件共享变量与函数的方法

    参考资料: vbs能否像其他编程语言一样,把写好的代码打包成类库以供调用呢?经过搜索和实验,发现vbs文件之间可以互相调用并共享变量,这样我们就不用再反复地编写轮子了. 以下是一个调用实例: ==== ...

  8. 201521123109《java程序设计》第九周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 1. 常用异常 题目5-1 1.1 截图你的提交结果(出现学号) 1.2 自 ...

  9. JAVA课程设计-购物车 (201521123101 柏清晔)

    1.团队课程设计博客链接 /[团队博客链接]http://www.cnblogs.com/yayaya/p/7062197.html 2.个人负责模板或任务说明 1.连接数据库 2.修改购物车的jsp ...

  10. LINUX - awk命令之NF和$NF区别 (转)

    NF和$NF 区别问答:(转)1.awk中$NF是什么意思?#pwd/usr/local/etc~# echo $PWD | awk -F/ '{print $NF}'etcNF代表:浏览记录的域的个 ...