前言

在上一篇中,我简单介绍了一下Tensorflow以及在本机及阿里云的PAI平台上跑通第一个示例的步骤。在本篇中我将稍微讲解一下几个基本概念以及Tensorflow的基础语法。

本文代码都是基于API版本r1.4。本文中本地开发环境为Pycharm,在文中不再赘述。

名词解释

核心概念

和很多开发语言设计一样,Tensorflow提供了多个级别的客户端API,其中最底层叫Tensorflow Core,使用这一层API可以完全控制Tensorflow,但是使用难度上也相对较大。在Tensorflow Core之上创建的更高级别的API,对开发者更友好,更易于使用、学习起来也更简单。

Tensorflow中该数据的核心单位是张量(Tensor)张量就是将一组基础数值,组织成形态(Shape)为一个任意维度的数组,张量阶(Rank)就是维度的数量。概念还是挺拗口的,举个例子就非常明了了:

[1., 2., 3.] # Rank=1, Shape=[3]
[[1., 2., 3.], [4., 5., 6.]] # Rank=2; Shape=[2, 3]: 代表第一层数组里包含2个子数组,每个子数组里包含3个值
[[[1., 2., 3.]], [[7., 8., 9.]]] # Rank=3; Shape=[2, 1, 3] : 代表第一层数组里包含2个数组,每个子数组里又包含1个子数组,子数组里包含3个元素

Tensorflow其实就是针对张量的计算图,计算图中的每个节点(Node)之间是有向连接的,看起来像张量的流动图(即从输入开始,流过一系列的节点,最终输出结果),Tensorflow也由此得名。官方原话是:

What is a Data Flow Graph?
Data flow graphs describe mathematical computation with a directed graph of nodes & edges. Nodes typically implement mathematical operations, but can also represent endpoints to feed in data, push out results, or read/write persistent variables. Edges describe the input/output relationships between nodes. These data edges carry dynamically-sized multidimensional data arrays, or tensors. The flow of tensors through the graph is where TensorFlow gets its name. Nodes are assigned to computational devices and execute asynchronously and in parallel once all the tensors on their incoming edges becomes available.

基础语法

Tensorflow Core编程,有点像画设计稿(构建流图)->按图施工(执行流图)这样的过程,执行流图必须使用tf.run()方法。计算图中的节点将接受0-N个张量作为输入值并产生一个输出值。在我的理解中,节点可以分为数值型运算型两种。

数值型

Constant

常量是一种没有输入,只有一个输出值的节点,常量在定义的时候就将其值存储在Tensorflow内部了,一旦定义则无法修改其值。

示例代码:

# 定义常量c1,并将其数值类型定义为tf.float32,默认值为1.0
c1 = tf.constant(1., dtype=tf.float32)
# 定义常量c2,并将其数值类型定义为tf.float32,默认值为2.0
c2 = tf.constant(2., dtype=tf.float32) # 执行流图: c1 + c2
with tf.Session() as sess:
print(sess.run(tf.add(c1, c2)))

Placeholder

占位符也是数值型节点的一种定义方式,占位符是一种Promise,就是承诺在执行tf.run()的时候一定会在参数feed_dict中提供其值。相比常量,占位符更像是一种参数,使用起来更灵活。

用占位符改写上面的示例代码如下:

# 定义占位值p1,并将其数值类型定义为tf.float32
p1 = tf.placeholder(tf.float32)
# 定义占位值p2,并将其数值类型定义为tf.float32
p2 = tf.placeholder(tf.float32) # 执行流图: p1 + p2
with tf.Session() as sess:
# 既然承诺过,因此在run的时候必须提供p1,p2的值,否则代码将报错
print(sess.run(tf.add(p1, p2), {p1: 1., p2: 2.}))

Variable

比起占位符,变量就更灵活了,可以随时赋值,这样就可以将某些节点的输出值赋值到指定的变量中,以便后续节点使用。这种模式在机器学习中是非常必要的,因为机器学习就是一个调参的过程,在运行的时候就希望能随时改变某些值以达到预期。

变量在使用的时候需要注意的是,在执行tf.run()方法之前,必须将变量进行初始化,初始化语句是:

init = tf.global_variables_initializer()
sess.run(init)

依旧是上述代码用变量改写:

# 定义变量v1,并将其数值类型定义为tf.float32,默认值为1.0
v1 = tf.Variable(1., tf.float32)
# 定义变量v2,并将其数值类型定义为tf.float32,默认值为1.0
v2 = tf.Variable(2., tf.float32) with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(tf.add(v1, v2)))

运算型

其实上面的代码中已经用到了加法tf.add()方法,减法是tf.subtract(),乘法是tf.multiply(),除法是tf.divide()等等。所有的方法可以在官方API文档中找到:https://www.tensorflow.org/api_docs/python/tf,这里就不赘述了。

TensorBoard

这里再简单介绍下Tensorflow自带的非常强大的可视化工具TensorBoardTensorBoard完全可以单独写一篇博文,本文先抛砖引玉,主要是为了直观的展示上述代码产生的图。

最简单的TensorBoard的使用方法如下:

# 保存计算图
with tf.summary.FileWriter(logdir='logs', graph=tf.get_default_graph()) as writer:
writer.flush()

执行上述代码之后,Tensorflow会将生成图所需的数据序列化到本地文件中,我指定了生成到当前同级目录logs中,生成成功之后,可以在PyCharm的控制台(使用快捷键ALT+F12可调出)中输入:

tensorboard --logdir=logs

等待几秒钟之后,控制台输出类似于如下内容则表示TensorBoard已经启动成功:

TensorBoard 0.4.0rc3 at http://localhost:6006 (Press CTRL+C to quit)

在本地浏览器(推荐使用Chrome)地址栏中,输入http://localhost:6006打开TensorBoard,大致效果如下:

复杂点的示例——线性模型

真正的机器学习过程中,我们当然是不知道变量的,我们真正的目的就是去习得这些变量,以达到模型能够尽可能准确预测样本的期望,也就是所谓的损失(loss)最小化。Tensorflow提供了优化器(optimizers)来做这个工作。最简单的优化器算法叫梯度下降,这是在线性模型中最常用的一种优化算法。优化器底层会调用Tensorflow Core中的tf.gradients方法来实现梯度下降

如上图所示,假设现在已知4个蓝色的点(1,0),(2,-1),(3,-2),(4,-3),我们需要推导出代表红色直线的系数Wb(公式为y = Wx + b),当然这个例子很简单,用肉眼看一下就知道W=-1b=1,用Tensorflow实现的完整代码如下:

import tensorflow as tf

# y = Wx + b, 初始化的时候随便定义一个初始值
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-.3], dtype=tf.float32)
# 输入值 x, 定义为占位符, 便于在学习过程中换成不同的值
x = tf.placeholder(tf.float32)
# 定义线性模型
linear_model = W*x + b
# 输出值 y, 定义为占位符, 便于在学习过程中换成不同的值
y = tf.placeholder(tf.float32) # 损失loss,线性模型中以欧式距离来衡量损失值
loss = tf.reduce_sum(tf.square(linear_model - y))
# 定义优化器optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss) # 4个蓝色点的训练数据,分解成x和y的数组为
x_train = [1, 2, 3, 4]
y_train = [0, -1, -2, -3] # 初始化Session
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # 循环1000次,训练模型
for i in range(1000):
sess.run(train, {x: x_train, y: y_train}) # 评估准确率
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train})
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss)) # 保存计算图
with tf.summary.FileWriter(logdir='logs_linear_regression', graph=tf.get_default_graph()) as writer:
writer.flush()

我本机的输出结果为:

W: [-0.9999969] b: [ 0.99999082] loss: 5.69997e-11

W的值无限接近-1,b的值无限接近1,而loss无限接近0,这个就是我们设计的函数y=-x+1

TensorBoard中查看结果如图所示:

这个图就看起来就比较像这么回事了。

在阿里云PAI上运行

本系列教程我尽量在阿里云的PAI平台上也运行一次,虽然目前公测阶段还是有很多问题,但是也是让很多人对机器学习变得触手可及的一种非常好的方案。

上一篇中,我用web版的OSS管理工具上传了源代码文件,本用例将使用OSS Browser客户端上传和管理文件,下载地址在阿里云后台如下位置:

下载客户端的同时,可以开通阿里云的Access Key(用来登录OSS Browser),开通位置如下:

开通之后,在管理界面看到如下内容:

打开并解压缩刚才下载的OSS Browser,双击打开oss-browser.exe文件,使用刚才开通的Access Key登录:

我依旧在上一篇相同的目录oss://danielfu-oss-tf-test/tensorflowtest/下,创建了一个放summary文件夹,并上传了代码文件tensorflow-demo2.py

在阿里云上使用Tensorflow需要将上述的demo示例代码进行少量的改造,格式基本也都是固定的,改造完之后的完整代码如下:

# 指定文件的编码格式,这个不加在PAI里运行会报错
#!/usr/bin/python
# -*-coding:utf-8 -*- from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import sys
import argparse import tensorflow as tf # 定义FLAGS用来传递全局参数
FLAGS = None def main(_):
# y = Wx + b, 初始化的时候随便定义一个初始值
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-.3], dtype=tf.float32)
# 输入值 x, 定义为占位符, 便于在学习过程中换成不同的值
x = tf.placeholder(tf.float32)
# 定义线性模型
linear_model = tf.multiply(W, x) + b
# 输出值 y, 定义为占位符, 便于在学习过程中换成不同的值
y = tf.placeholder(tf.float32) # 损失loss,线性模型中以欧式距离来衡量损失值
loss = tf.reduce_sum(tf.square(linear_model - y))
# 定义优化器optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss) # 4个蓝色点的训练数据,分解成x和y的数组为
x_train = [1, 2, 3, 4]
y_train = [0, -1, -2, -3] # 初始化Session
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init) # 循环1000次,训练模型
for i in range(1000):
sess.run(train, {x: x_train, y: y_train}) # 评估准确率
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train})
print("W: %s b: %s loss: %s" % (curr_W, curr_b, curr_loss)) # 保存计算图
with tf.summary.FileWriter(FLAGS.summaryDir + 'train', sess.graph) as writer:
writer.flush() # 在运行main程序的时候,将参数传入执行代码中
# 本例中就指定了summaryDir参数
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--summaryDir', type=str, default='',
help='Summaries log directory')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main)

PAI中,下图中1的位置指定为tensorflow-demo2.py文件,2的位置指定为summary目录,然后点击3处的按钮:

可能是PAI的BUG,该示例在执行的时候,输出结果永远是报错,但是在OSS中,summary文件也已经成功生成,而且如果点击查看Tensorblaord按钮,其实是可以启动TensorBoard的:

如上图所示,可以成功运行PAI端的TensorBoard(URL是阿里云的,不是本机localhost的)。而且生成的图和本地运行生成的图也是一模一样的(废话)。

参考文档

官方文档:https://www.tensorflow.org/get_started/get_started


本文在我的博客园我的个人博客上同步发布,作者保留版权,转载请注明来源。

机器学习笔记4-Tensorflow线性模型示例及TensorBoard的使用的更多相关文章

  1. 机器学习笔记5-Tensorflow高级API之tf.estimator

    前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记 ...

  2. Python机器学习笔记:使用Keras进行回归预测

    Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow.是一个高度模块化的神经网络库,支持CPU和GPU. 本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何 ...

  3. Python机器学习笔记:sklearn库的学习

    网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...

  4. Python机器学习笔记:不得不了解的机器学习面试知识点(1)

    机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因 ...

  5. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  6. Python机器学习笔记 集成学习总结

    集成学习(Ensemble  learning)是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合,从而获得比单个学习器显著优越的泛化性能.它不是一种单独的机器学习算法啊,而更像是一种优 ...

  7. 学习笔记TF066:TensorFlow移动端应用,iOS、Android系统实践

    TensorFlow对Android.iOS.树莓派都提供移动端支持. 移动端应用原理.移动端.嵌入式设备应用深度学习方式,一模型运行在云端服务器,向服务器发送请求,接收服务器响应:二在本地运行模型, ...

  8. Google TensorFlow 学习笔记一 —— TensorFlow简介

    "TensorFlow is an Open Source Software Library for Machine INtenlligence" 本笔记参考tensorflow. ...

  9. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

随机推荐

  1. 三、spring cloud 服务提供与调用

    如何使用eureka服务注册中心,搭建一个简单的服务端注册服务,客户端去调用服务使用. 案例中有三个角色:服务注册中心.服务提供者.服务消费者,eureka单机版启动既可,流程是首先启动注册中心,服务 ...

  2. 在java项目中使用webservice

    今天学习webservice,主要参考了网络上的一些文章. 1.关于原理的介绍:个人认为这篇文章写得不错了,戳这里. 2.关于demo的编写:个人认为这篇文章很简洁,也能运行成功,戳这里. 按照上面那 ...

  3. 自学Zabbix3.7.2-事件Event-来源与分类

    一.zabbix 事件从字面理解,就是发生了一个事情就算是一个事件.就在trigger的文章内,我们已经有用到事件,这个事件要讲概念真心不知道怎么说,就拿trigger事件来说,如果trigger从当 ...

  4. JSR系列开篇

    JSR是Java Specification Requests的缩写,意思是Java 规范提案.是指向JCP(Java Community Process)提出新增一个标准化技术规范的正式请求.任何人 ...

  5. javascript中的异步 macrotask 和 microtask 简介

    javascript中的异步 macrotask 和 microtask 简介 什么是macrotask?什么是microtask?在理解什么是macrotask?什么是microtask之前,我们先 ...

  6. Android打赏功能:支付宝转账

    适用于个人开发者开发的APP中,让用户打赏给作者,实质上进行支付宝转账到指定账号的功能. 一.打开'支付宝'APP ,点击'收款'功能 ,将收款码(二维码)图片保存到手机上(进一步移到电脑上). 二. ...

  7. IntelliJ IDEA 左侧列表设置忽略文件格式

    什么问题 idea 中设置忽略文件 Unity开发过程中使用Lua做逻辑开发 Unity会自动生成xx.meta文件 这种文件再使用Idea开发过程中没有用处 显示文件列表中会看着比较乱 如何设置 F ...

  8. 【二十五】cookie与session学习总结

    一:cookie 1.创建cookie 关键字:setcookie 用于保存cookie 原理:当浏览器访问cookie.php页面时,我们的服务器就会以set-cookie的方式将cookie信息回 ...

  9. 33 款主宰 2017 iOS 开发的开源库

    推荐一篇文章 改文章汇聚了现在主流的一些三方框架,很值得一看 https://mp.weixin.qq.com/s/ICodliohtzbmA-eLKRFT-Q

  10. ArcGIS API for JavaScript 4.2学习笔记[13] Layer的弹窗(PopupTemplate)

    上一篇文章中讲到Popup是一个弹窗,是View对象的默认内置弹窗,并且在View对象构造时就顺便构造了. 那么这个PopupTemplate是什么呢? 后半截单词Template是"模板& ...