题目背景

矩阵快速幂

题目描述

给定n*n的矩阵A,求A^k

输入输出格式

输入格式:

第一行,n,k

第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素

输出格式:

输出A^k

共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7

输入输出样例

输入样例#1:

2 1
1 1
1 1
输出样例#1:

1 1
1 1

说明

n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂

 #include <cstdio>
#include <iostream>
using namespace std;
typedef long long ll;
ll x[][];
ll ans[][];
ll dx[][];
const int p=1e9+;
inline void anscf(int n)
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dx[i][j]=ans[i][j],ans[i][j]=; for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int k=;k<=n;k++)
ans[i][j]=(ans[i][j]+(x[i][k]*dx[k][j])%p)%p;
}
inline void xcf(int n)
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dx[i][j]=x[i][j],x[i][j]=; for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int k=;k<=n;k++)
x[i][j]=(x[i][j]+(dx[i][k]*dx[k][j])%p)%p;
}
inline void fastpow(ll n,ll w)
{
while(w)
{
if(w%==) anscf(n);
w/=;
xcf(n);
}
}
int main()
{
ll n,k;
scanf("%lld%lld",&n,&k);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&x[i][j]),ans[i][j]=x[i][j];
fastpow(n,k-);
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
printf("%lld ",ans[i][j]);
puts("");
}
}

Luogu P3390 【模板】矩阵快速幂的更多相关文章

  1. 3990 [模板]矩阵快速幂 洛谷luogu

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  2. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  3. 【洛谷P3390】矩阵快速幂

    矩阵快速幂 题目描述 矩阵乘法: A[n*m]*B[m*k]=C[n*k]; C[i][j]=sum(A[i][1~n]+B[1~n][j]) 为了便于赋值和定义,我们定义一个结构体储存矩阵: str ...

  4. 【洛谷 p3390】模板-矩阵快速幂(数论)

    题目:给定n*n的矩阵A,求A^k. 解法:利用矩阵乘法的定义和快速幂解答.注意用负数,但是数据太弱没有卡到我......(P.S.不要在 typedef long long  LL; 前使用 LL. ...

  5. Luogu P3390 【模板】矩阵快速幂&&P1939 【模板】矩阵加速(数列)

    补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一 ...

  6. Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)

    Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...

  7. 模板【洛谷P3390】 【模板】矩阵快速幂

    P3390 [模板]矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 矩阵A的大小为n×m,B的大小为n×k,设C=A×B 则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i, ...

  8. P3390 【模板】矩阵快速幂

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  9. luoguP3390(矩阵快速幂模板题)

    链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...

随机推荐

  1. 详解连接SQL Server数据库的方法,并使用Statement接口实现对数据库的增删改操作

    总结一下,连接SQL Server数据库需要以下几个步骤: 1. 导入驱动Jar包:sqljdbc.jar 2. 加载并注册驱动程序 3. 设置连接路径 4. 加载并注册驱动 5. 连接数据库 6. ...

  2. Luogu T7152 细胞(递推,矩阵乘法,快速幂)

    Luogu T7152 细胞(递推,矩阵乘法,快速幂) Description 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每 ...

  3. MongoDB入门解析【学习记录】

    刚开始学习mongodb,对笔记做了一个整理.是基于nodejs来学习的. 1.mongodb介绍 mongodb 是C++语言编写的,是一个基于分布式文件存储的开源数据库系统. 在高负载的情况下,添 ...

  4. vue 实现 tomato timer(蕃茄钟)

    近期在学习[时间管理]方面的课程,其中有一期讲了蕃茄工作法,发现是个好多东西.蕃茄工作法核心思想就是:工作25分钟,休息5分钟.如果您好了解更多可以自行度娘. 在加上本人是一个程序猿,就想用程序的方式 ...

  5. SetConsoleWindowInfo 函数--设置控制台窗口的大小和位置

    SetConsoleWindowInfo函数 来源:https://msdn.microsoft.com/en-us/library/windows/desktop/ms686125(v=vs.85) ...

  6. 如何修改script.bin/script.fex

    你是否经常看见其他帖子里或者其他人提到要修改script.bin或script.fex ,但你又不知道怎么改. 其实 script.bin就是script.fex通过 fex2bin生成的,scrip ...

  7. 如何将Android Studio与华为软件开发云代码仓库无缝对接(二)

    上篇文章:如何将Android Studio与华为软件开发云代码仓库无缝对接(一) 上一章讲了,如何用Android Studio以软件开发云代码仓库为基础,新建一个项目.接下来,这一章继续讲建好项目 ...

  8. java反射机制(1)

      百度百科: java 反射机制:JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意方法和属性:这种动态获取信息以及动态调用对象方 ...

  9. Aero问题

    有时候打开电脑会发现自己的桌面有点不一样,没有原来的好看.别着急,这是因为你的Aero没有正常启动.

  10. 数据处理之pandas简单介绍

    Offical Website :http://pandas.pydata.org/ 一:两种基本的数据类型结构 Series 和 DataFrame 先来看一下Series import panda ...