2820: YY的GCD

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 1624  Solved: 853
[Submit][Status][Discuss]

Description

神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种
傻×必然不会了,于是向你来请教……多组输入

Input

第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M

Output

T行,每行一个整数表示第i组数据的结果

Sample Input

2
10 10
100 100

Sample Output

30
2791

HINT

T = 10000

N, M <= 10000000


和bzoj2705很像http://www.cnblogs.com/candy99/p/6200745.html

但是n和m不同,不能使用直接欧拉函数的方法

参考:http://blog.csdn.net/acdreamers/article/details/8542292 && popoqqq课件

和上一题相同的函数:

为满足的对数

为满足的对数

显然,反演后得到

可以枚举每一个质数,套用上一题的做法,p相当于k,d*p也就是p的倍数了...很像上一题我WT1中的式子

其实d只要枚举到min(n,m)/p

然而复杂度承受不了,大约n/logn*sqrt(n)

我们设,那么继续得到

为什么这么做呢?因为这样之后发现F函数与p和d无关了,(要不然枚举p和d也是枚举了T)

可以提到前面,剩下的那一块可以处理前缀和做到O(1),前面再用除法分块,做到O(sqrt(n))

WT:

如何求g(T)=Σ{p|T && isprime(p)}miu(T/p)

法1.

只需要枚举每个素数,将他的倍数的g更新就可以了

由于有1/1+1/2+1/3+...+1/n=O(logn)这个结论 因此每个质数枚举时是均摊O(logn)的(*n后好想,是nlogn,但是质数只有n/logn个)

而质数恰好有O(n/logn)个 因此暴力枚举就是O(n)的

法2.

线性筛

g[i*p[j]]

当p[j]|i时结果显然为miu(i)

否则考虑mu(i*p[j]/pp),当p[j]=pp时为mu[i],p[j]!=pp时的所有的和就是-g(i),所以总的结果为mu(i)-g(i)

枚举质数 4176ms

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1e7+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,m;
bool notp[N];
int p[N],mu[N],g[N];
void sieve(){
mu[]=;
for(int i=;i<N;i++){
if(!notp[i]) p[++p[]]=i,mu[i]=-;
for(int j=;j<=p[]&&i*p[j]<N;j++){
notp[i*p[j]]=;
if(i%p[j]==){
mu[i*p[j]]=;
break;
}
mu[i*p[j]]=-mu[i];
}
} for(int j=;j<=p[];j++)
for(int i=p[j];i<N;i+=p[j])
g[i]+=mu[i/p[j]];
for(int i=;i<N;i++) g[i]+=g[i-];
}
ll cal(int n,int m){
if(n>m) swap(n,m);
ll ans=;int r;
for(int i=;i<=n;i=r+){
r=min(n/(n/i),m/(m/i));
ans+=(ll)(g[r]-g[i-])*(n/i)*(m/i);
}
return ans;
}
int main(int argc, const char * argv[]) {
sieve();
int T=read();
while(T--){
n=read();m=read();
printf("%lld\n",cal(n,m));
}
return ;
}

线性筛:3328ms

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1e7+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,m;
bool notp[N];
int p[N],mu[N],g[N];
void sieve(){
mu[]=;
for(int i=;i<N;i++){
if(!notp[i]) p[++p[]]=i,mu[i]=-,g[i]=;
for(int j=;j<=p[]&&i*p[j]<N;j++){
notp[i*p[j]]=;
if(i%p[j]==){
mu[i*p[j]]=;
g[i*p[j]]=mu[i];
break;
}
mu[i*p[j]]=-mu[i];
g[i*p[j]]=mu[i]-g[i];
}
}
for(int i=;i<N;i++) g[i]+=g[i-];
}
ll cal(int n,int m){
if(n>m) swap(n,m);
ll ans=;int r;
for(int i=;i<=n;i=r+){
r=min(n/(n/i),m/(m/i));
ans+=(ll)(g[r]-g[i-])*(n/i)*(m/i);
}
return ans;
}
int main(int argc, const char * argv[]) {
sieve();
int T=read();
while(T--){
n=read();m=read();
printf("%lld\n",cal(n,m));
}
return ;
}

BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】的更多相关文章

  1. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  2. Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)

    2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...

  3. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  4. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  5. BZOJ 2820: YY的GCD 莫比乌斯反演_数学推导_线性筛

    Code: #include <cstdio> #include <algorithm> #include <cstring> #include <vecto ...

  6. BZOJ 2820 YY的GCD ——莫比乌斯反演

    我们可以枚举每一个质数,那么答案就是 $\sum_{p}\sum_{d<=n}\mu(d)*\lfloor n / pd \rfloor *\lfloor m / pd \rfloor$ 直接做 ...

  7. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  8. 【刷题】BZOJ 2820 YY的GCD

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...

  9. SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)

    4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...

随机推荐

  1. Android浮层点击穿透问题

    最近做微信公众号开发的时候遇到一个问题,上线后发现此问题后检查代码没有发现问题,无奈只能回滚到上一个版本. 问题是这样的:页面一个选择的浮层,在浮层点击确定后,下面的页面会自动提交 在测试环境上无法重 ...

  2. ASP.NET MVC5+EF6+EasyUI 后台管理系统(35)-文章发布系统②-构建项目

    系列目录 注:阅读本文,需要阅读本系列的之前文章 代码生成器下载地址(文章开头处) 接下来我们建立数据库的表和各层的代码 我们只需要两张表,文章列表(MIS_Article)和类别表(MIS_Arti ...

  3. Java设计模式之代理模式(Proxy)

    前言: 最近在研究Retrofit开源框架的时候,其主要核心代码是通过注解标示参数,动态代理模式实现具体接口,反射机制进行参数解析,最终实现发送请求.其实之前在学习Xutils源码的时候,Xutils ...

  4. 细说Promise

    一.前言 JavaScript是单线程的,固,一次只能执行一个任务,当有一个任务耗时很长时,后面的任务就必须等待.那么,有什么办法,可以解决这类问题呢?(抛开WebWorker不谈),那就是让代码异步 ...

  5. ASP.NET Core 中文文档 第三章 原理(12)托管

    原文:Hosting 作者:Steve Smith 翻译:娄宇(Lyrics) 校对:何镇汐.许登洋(Seay) 为了运行 ASP.NET Core 应用程序,你需要使用 WebHostBuilder ...

  6. javascript学习笔记一

    今天看的javascript 应用开发实践指南 看了js库 jquery ,明确了要深入学习jquery的想法. 对于javascript原生态的ajax写法(兼容性只需考虑ie6),封装为函数: f ...

  7. MIS性能优化常见问题与方案(辅助项目组性能优化的总结贴)

    最近帮忙公司的几个项目组进行了不同方面的性能优化,发现几个项目都出现了一些共性的问题.这里写一篇文章,总结一下这几类问题,以及其对应的解决方案.方便其它项目组参考.   常见问题一:打开页面非常慢,有 ...

  8. H5天气查询demo(二)

    最近刚好有空,学长帮忙让做个毕设,于是我提到了那个基于H5地理位置实现天气查询的方法,学长听了也觉得不错,于是就这个主题,扩展了一下,做了一个航班管理查询系统,为上次博客中提到的利用H5 api中的经 ...

  9. Mac制作U盘系统(OS X El Capitan)教程

    前言部分 重装过Mac OS X系统的人应该都深有体会,通过自带的重新安装 Mac OS X功能恢复系统(开机时按Command+R) 要耗费10几个小时才能完成(请求苹果国外服务器),但如果通过U盘 ...

  10. IE 浏览器各个版本 JavaScript 支持情况一览表

    语言元素 语言元素 突发.IE6 标准.IE7 标准 IE8 标准 IE 9 标准 IE 10 标准 边缘 Windows 应用商店应用程序 __proto__ 属性 (Object) (JavaSc ...