常见优化算法实现

这里实现的主要算法有:

一维搜索方法:

黄金分割法

二次差值法

多维搜索算法

最速下降法

partan加速的最速下降法

共轭梯度法

牛顿法

拟牛顿法

使用函数表示一个用于优化的目标,包括其梯度函数和hessian矩阵函数

import numpy as np
import math
#用于测试的一个多元函数的例子
def f(x):
return (x[0]-1)**2+5*(x[1]-5)**2+(x[2]-1)**2+5*(x[3]-5)**2 #f(x)函数的gradient向量计算函数
def g(x):
return np.array([2*(x[0]-1),10*(x[1]-5),2*(x[2]-1),10*(x[3]-5)]) #f(x)函数的hessian矩阵的逆矩阵计算函数
def hi(x=None):
h=[1/2,1/10,1/2,1/10]
return np.diag(h)

拟牛顿法

def quasi_newton(f=f,x0=np.zeros(4),gradient=g,acc=0.001):
k=0
x=x0
xp=None
hpk=None
gpk=None while True:
gk=gradient(x)
#print(gk)
if np.sum(gk**2)<=acc:
#print("迭代 %d 次"%(k+1))
return x,np.round(f(x),5)
if k==0:
hik=np.eye(x0.shape[0])
else:
dx=x-xp
dg=gk-gpk temp = (dx-np.dot(hpk,dg)).reshape((-1,1))
hik=hpk + np.dot(temp,temp.transpose())/(np.dot(temp.transpose(),dg.reshape((-1,1))))
#print(hik) pk=-1*np.dot(hik,gk)
alpha,y=quadraticInterploation(lambda alpha:(f(alpha*pk+x)),0,10,0.001)
#更新变量
x=alpha*pk+x
hpk=hik
xp=x
gpk=gk
k+=1

共轭方向法

def conjugate_direction(f=f,x0=np.zeros(4),gradient=g,acc=0.001):
k=0
x=x0
#设置初值
gpk=x0
ppk=x0 while True:
gk=gradient(x)
#print(gk)
if np.sum(gk**2)<=acc:
#print("迭代 %d 次"%(k+1))
return x,np.round(f(x),5)
if k==0:
pk=-1*gk
else:
betak=np.sum(gk*gk)/np.sum(gpk*gpk)
pk=-1*gk+betak*ppk
#lambda表达式可以使用上层函数中的变量,这样对于不同的上下文,就是不同的函数
alpha,y=quadraticInterploation(lambda alpha:(f(alpha*pk+x)),0,10,0.001)
x=alpha*pk+x
ppk=pk
gpk=gk
k+=1

最速下降法

#最速下降法
def steepestDescent(f=f,x0=np.zeros(4),gradient=g,acc=0.001):
k=0
x=x0
while True:
gk=gradient(x)
pk=-1*gk
if np.sum(gk**2)<=acc:
#print("迭代 %d 次"%(k+1))
return x,f(x)
#lambda表达式可以使用上层函数中的变量,这样对于不同的上下文,就是不同的函数
alpha,y=quadraticInterploation(lambda alpha:(f(alpha*pk+x)),0,10,0.001)
x=alpha*pk+x
k+=1

牛顿法

def newton(f=f,x0=np.zeros(4),gradient=g,hessian=hi,acc=0.001):
k=0
x=x0
while True:
gk=gradient(x)
hik=hessian(x)
pk=-1*np.dot(gk,hik)
if np.sum(gk**2)<=acc:
#print("迭代 %d 次"%(k+1))
return x,f(x)
#lambda表达式可以使用上层函数中的变量,这样对于不同的上下文,就是不同的函数
alpha,y=quadraticInterploation(lambda alpha:(f(alpha*pk+x)),0,10,0.001)
x=alpha*pk+x
k+=1

使用partan加速的最速下降法

def partan(f=f,x0=np.zeros(4),gradient=g,acc=0.001,N=3):
k=0
x=x0
xp1=x0
xp2=x0
while True:
if k>=N and k%3==0:
pk=x-xp2
else:
gk=gradient(x)
pk=-1*gk
if np.sum(pk**2)<=acc:
#print("迭代 %d 次"%(k+1))
return x,f(x)
#lambda表达式可以使用上层函数中的变量,这样对于不同的上下文,就是不同的函数
alpha,y=quadraticInterploation(lambda alpha:(f(alpha*pk+x)),0,10,0.001)
xp2=xp1
xp1=x
x=alpha*pk+x
k+=1

一维搜索的黄金分割方法

def goldenSegmantation(f,a,b,acc):
x1=a+0.382*(b-a)
x2=b-(x1-a)
R=f(x1);G=f(x2)
#因为浮点数的舍入误差,可能导致a,b的大小逆转
while abs(b-a)>acc and a<=x1<x2<=b:
#print(abs(b-a))
if R>G:
a=x1
x1=x2
R=G
x2=b-(x1-a)
G=f(x2)
else:
b=x2
x2=x1
G=R
x1=a+(b-x2)
R=f(x1)
return (a+b)/2.0,f(((a+b)/2.0))

一维搜索的二次差值方法

def quadraticInterploation(f,a,b,acc):
assert(a<b)
x1=a;x2=(a+b)/2;x3=b
f1=f(x1);f2=f(x2);f3=f(x3)
while True:
c1=(f3-f1)/(x3-x1);c2=((f2-f1)/(x2-x1)-c1)/(x2-x3)
xp=0.5*(x1+x3-c1/c2)
fp=f(xp)
if abs(xp-x2)<acc or not a<=x1<x2<x3<=b:
if fp<f2:
return xp,fp
else:
return x2,f2
if x2<xp:
if f2<fp:
x3=xp;f3=fp
else:
x1=x2;f1=f2
x2=xp;f2=fp
else:
if f2<fp:
x1=xp;f1=fp
else:
x3=x2;f3=f2
x2=xp;f2=fp

测试一维搜索方法

%timeit(goldenSegmantation(lambda x:(x**4-5),-1,1,0.0001))
%timeit(quadraticInterploation(lambda x:(x**4-5),-1,1,0.00001))
%timeit(goldenSegmantation(lambda x:(x**2-5*x+6),-10,10,0.00000005))
%timeit(quadraticInterploation(lambda x:(x**2-5*x+6),-10,10,0.000001))
%timeit(goldenSegmantation(math.sin,-1*math.pi,0,0.000001))
%timeit(quadraticInterploation(math.sin,-1*math.pi,0,0.0000001))
11.3 µs ± 58.8 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
3.09 µs ± 18.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
12.5 µs ± 47.9 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
5.44 µs ± 27.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
7.97 µs ± 33.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
2.05 µs ± 19.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

结果分析

对于不同的目标函数,二次插值的速度均大于黄金分割方法

测试高维搜索方法

%timeit steepestDescent()
%timeit partan()
%timeit conjugate_direction()
%timeit newton()
%timeit quasi_newton()
236 µs ± 2.39 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
297 µs ± 2.39 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
197 µs ± 1.49 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
125 µs ± 276 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
224 µs ± 1.28 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

结果分析

从结果看出来,partan加速方法相比最速下降方法并没有什么优势,主要原因是目标函数太简单,迭代次数太少

拟牛顿法相比最速下降法也没有什么优势,我想也是基于同样的原因

常见优化算法统一框架下的实现:最速下降法,partan加速的最速下降法,共轭梯度法,牛顿法,拟牛顿法,黄金分割法,二次插值法的更多相关文章

  1. 最优化算法——常见优化算法分类及总结

    之前做特征选择,实现过基于群智能算法进行最优化的搜索,看过一些群智能优化算法的论文,在此做一下总结. 在生活或者工作中存在各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题"在一定成 ...

  2. 优化深度神经网络(二)优化算法 SGD Momentum RMSprop Adam

    Coursera吴恩达<优化深度神经网络>课程笔记(2)-- 优化算法 深度机器学习中的batch的大小 深度机器学习中的batch的大小对学习效果有何影响? 1. Mini-batch ...

  3. zz:一个框架看懂优化算法之异同 SGD/AdaGrad/Adam

    首先定义:待优化参数:  ,目标函数: ,初始学习率 . 而后,开始进行迭代优化.在每个epoch  : 计算目标函数关于当前参数的梯度:  根据历史梯度计算一阶动量和二阶动量:, 计算当前时刻的下降 ...

  4. 一个框架看懂优化算法之异同 SGD/AdaGrad/Adam

    Adam那么棒,为什么还对SGD念念不忘 (1) —— 一个框架看懂优化算法 机器学习界有一群炼丹师,他们每天的日常是: 拿来药材(数据),架起八卦炉(模型),点着六味真火(优化算法),就摇着蒲扇等着 ...

  5. Adam那么棒,为什么还对SGD念念不忘 (1) —— 一个框架看懂优化算法

    机器学习界有一群炼丹师,他们每天的日常是: 拿来药材(数据),架起八卦炉(模型),点着六味真火(优化算法),就摇着蒲扇等着丹药出炉了. 不过,当过厨子的都知道,同样的食材,同样的菜谱,但火候不一样了, ...

  6. 解析基于keras深度学习框架下yolov3的算法

    一.前言 由于前一段时间以及实现了基于keras深度学习框架下yolov3的算法,本来想趁着余热将自己的心得体会进行总结,但由于前几天有点事就没有完成计划,现在趁午休时间整理一下. 二.Keras框架 ...

  7. [Algorithm] 群体智能优化算法之粒子群优化算法

    同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简 ...

  8. 深度学习必备:随机梯度下降(SGD)优化算法及可视化

    补充在前:实际上在我使用LSTM为流量基线建模时候,发现有效的激活函数是elu.relu.linear.prelu.leaky_relu.softplus,对应的梯度算法是adam.mom.rmspr ...

  9. 【优化算法】遗传算法GA求解混合流水车间调度问题(附C++代码)

    00 前言 各位读者大家好,好久没有介绍算法的推文了,感觉愧对了读者们热爱学习的心灵.于是,今天我们带来了一个神奇的优化算法--遗传算法! 它的优点包括但不限于: 遗传算法对所求解的优化问题没有太多的 ...

随机推荐

  1. hash在URL上的用法及作用

    阅读目录 1. # 2. ? 3. & 回到顶部 1. # 10年9月,twitter改版.一个显著变化,就是URL加入了"#!"符号.比如,改版前的用户主页网址为http ...

  2. (七)php运算符

    一:算数运算符 +(加).-(减).*(成)./(除) %(取模,求余的意思) <?php $a=7/3; echo $a; //2.3333333333333.因为float类型的最大精度为1 ...

  3. eclipse导入android studio时一些异常的处理

    Error:Execution failed for task ':app:compileDebugNdk'. > Error: Your project contains C++ files ...

  4. 使用Spring框架实现用户登录实例

    以下要讲的案例来自于<Spring 3.X 企业应用开发实战>这本书. 针对我一周的摸索,现在总结几个易错点,当然,这是在我自己犯过错误的前提下总结出来的,如果有说的不到位的地方,欢迎大家 ...

  5. Vue源码后记-vFor列表渲染(3)

    这一节肯定能完! 经过DOM字符串的AST转化,再通过render变成vnode,最后就剩下patch到页面上了. render函数跑完应该是在这里: function mountComponent( ...

  6. 安装jdk时出现java -version权限不够问题

    今天在ubuntu上安装jdk的时候,最后测试java -version总是不行,出现了 bash: /home/jdk1.7.0_25/bin/java: 权限不够的问题 百度之后,在http:// ...

  7. Java语言实现机制

    Java语言实现机制 1.Java虚拟机(Java Virtual Machine) Java虚拟机(JVM)是在一台计算机上由软件模拟也可以用硬件来实现的假想的计算机.它定义了指令集(相当于中央处理 ...

  8. 【Win 10 应用开发】UI Composition 札记(二):基本构件

    在上一篇中,老周用一个示例,演示了框架视图的创建过程,在本篇中,老周将给大伙伴们说一下 Composition 构建 UI 的一些“零件”. UI Composition 有一个核心类——对,就是 C ...

  9. Problem E 

    Problem Description 省政府"畅通工程"的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可).现得到城镇道路统计 ...

  10. struts2框架的登录制作

    首先:我们要建一个web项目 接着: 我们先来导入struts的xml文件 第一步:右击你的项目名,鼠标到MyEclipse会看到一个add struts开头的文件,点开以后看到: 这里我们选择str ...