NTT
1 问题描述
FFT问题解决的是复数域上的卷积。如果现在的问题是这样:给出两个整数数列$Ai,Bj,0\leq i\leq n-1,0\leq j\leq m-1$,以及素数$P$,计算新数列$Ci=(\sum_{k}A_{i-k}B_{k})\%P$。不在$A,B$定义域内的值均为0.NTT就是解决这样在模意义下的卷积问题。
2 预备知识
原根的概念:对于两个正整数$a,m$,如果$Gcd(a,m)=1$,那么存在$d\leq m-1$(比如$\varphi (m)$)使得$a^{d}\%m=1$。如果对于某个g使得在$[1,m-1]$内只有$\varphi (m)$满足$g^{\varphi (m)}\%m=1$,那么g被称作m的原根。比如7的原根是3,因为在1,2,3,4,5,6中只有3^6%7=1。
3 算法描述
NTT的原理与FFT的原理完全相同。即首先我们会将$A,B$通过NTT变换转化成新数列$A^{'},B^{'}$,然后我们有$C_{k}^{'}=A_{k}^{'}B_{k}^{'}$。最后通过NTT逆变换,将$C^{'}$转化成$C$.
FFT变换是这样的:$A_{k}^{'}=\sum_{j=0}^{n-1}A_{j}e^{\frac{2\pi i}{n}kj}=\sum_{j=0}^{n-1}A_{j}w_{n}^{kj}$。
FFT逆变换是这样的:$A_{k}=\frac{1}{n}\sum_{j=0}^{n-1}A_{j}^{'}e^{-\frac{2\pi i}{n}kj}=\frac{1}{n}\sum_{j=0}^{n-1}A_{j}^{'}w_{n}^{-kj}$
$e^{\frac{2\pi i}{n}}$在这里之所以能够使用,是因为它在乘法意义下构成一个群。同理,在模P的系统中,对于乘法来说,$g^{\frac{P-1}{n}}$也构成一个群,类似$(e^{\frac{2\pi i}{n}})^{n}=1$,$(g^{\frac{P-1}{n}})^{n}%P=1$。其中g是P的原根。
因此,NTT变换是: $A_{k}^{'}=\sum_{j=0}^{n-1}A_{j}g^{\frac{P-1}{n}kj}$
NTT逆变换: $A_{k}=\frac{1}{n}\sum_{j=0}^{n-1}A_{j}^{'}g^{-\frac{P-1}{n}kj}=\frac{1}{n}\sum_{j=0}^{n-1}A_{j}^{'}g^{((P-1)-\frac{P-1}{n})kj}$
所以,NTT变换使用的基为$g^{\frac{P-1}{n}}$,NTT逆变换使用的基为$g^{(P-1)-\frac{P-1}{n}}$
这里有一些需要注意的问题。在实际计算时,我们会将整个数列的长度扩展至$2^{K}$次幂,因此在每一次分治时,每个子问题的长度n也都是2的某次幂。而这里,必须要保证n能够整除$P-1$,所以若$P=c*2^t+1$,其中$c$为奇数。那么一定要满足$t\geq K$
NTT的更多相关文章
- Tsinsen A1493 城市规划(DP + CDQ分治 + NTT)
题目 Source http://www.tsinsen.com/A1493 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在 ...
- HDU5322 Hope(DP + CDQ分治 + NTT)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5322 Description Hope is a good thing, which can ...
- Codeforces632E Thief in a Shop(NTT + 快速幂)
题目 Source http://codeforces.com/contest/632/problem/E Description A thief made his way to a shop. As ...
- hihoCoder1388 Periodic Signal(2016北京网赛F:NTT)
题目 Source http://hihocoder.com/problemset/problem/1388 Description Profess X is an expert in signal ...
- hihocoder #1388 : Periodic Signal NTT&FFT
传送门:hihocoder #1388 : Periodic Signal 先来几个大牛传送门: (模板) NTT long long 版 解法一:因为我们知道FFT会精度不够,所以坚持用NTT,但 ...
- FFT,NTT 专题
学习傅里叶的基本性质及其代码,可以参考大神理解 还有 ACdream 的博客 贴一下NTT的模板: using namespace std; typedef long long ll; int n; ...
- [快速数论变换 NTT]
先粘一个模板.这是求高精度乘法的 #include <bits/stdc++.h> #define maxn 1010 using namespace std; char s[maxn]; ...
- HDU5829 NTT
以下这份代码并没有过.但感觉没有问题.不是蜜汁WA就是蜜汁T. #include <cstdio> #include <iostream> #include <cstri ...
- NTT【51nod】1514 美妙的序列
题意:1~n 的全排列中,有多少个排列满足任意从中间切成两段后,左边段的最大值大于右边段的最小值? 例如:n为3时有3种 2 3 1 3 1 2 3 2 1 解释:比如 2 3 1 (2) (3 1) ...
随机推荐
- jquery tab键转换
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 《高质量C++/C编程指南》陷阱 【转】
作者:幻の上帝 出处:http://hi.baidu.com/frankhb1989/item/185f0a14823dd1f8dceeca2c 此文硬伤不少,且相对谭XX的书而言隐晦许多,不建议新手 ...
- SSAS中角色(Role)定义需要注意的两个地方
开发过SSAS Cube的朋友应该都知道,我们可以在SSAS中设置若干个角色,把windows账号放入这些角色中来限制不同的windows账号可以看到的数据有哪些,这里有两点需要注意一下. 首先在Cu ...
- YeoMan 与Angularjs
链接地址: Yeoman:强大的web构建工具 http://hao.jobbole.com/yeoman/ Yeoman官方教程:用Yeoman和AngularJS做Web应用 http://blo ...
- shell 日期加减
shell 日期加减运算 比如今日是2012-04-22 $ date -d "+1 day" +%Y-%m-%d 2012-04-23 $ date -d "- ...
- Tomcat增加缓存
- python 去除字符串中连续的空格,并使用其他的分隔符替代连续的空格
例:1: filt函数用法及匿名函数lamda用法,详见http://www.cnblogs.com/apple2016/p/5657698.html join()用法详见http://www.cnb ...
- 颜色表及html代码
颜色名称及色样表(HTML版) 颜色名 中文名称 Hex RGB 十进制 Decimal LightPink 浅粉红 #FFB6C1 255,182,193 Pink 粉红 #FF ...
- POJ 3026 : Borg Maze(BFS + Prim)
http://poj.org/problem?id=3026 Borg Maze Time Limit: 1000MS Memory Limit: 65536K Total Submissions ...
- 加载 pcntl 多进程
加载 pcntl 有两种方式 一种重新编译安装,在编译时加 --enable-pcntl ./configure --prefix=/usr/local/php --with-mysql=/usr/l ...