1 问题描述
FFT问题解决的是复数域上的卷积。如果现在的问题是这样:给出两个整数数列$Ai,Bj,0\leq i\leq n-1,0\leq j\leq m-1$,以及素数$P$,计算新数列$Ci=(\sum_{k}A_{i-k}B_{k})\%P$。不在$A,B$定义域内的值均为0.NTT就是解决这样在模意义下的卷积问题。

2 预备知识
原根的概念:对于两个正整数$a,m$,如果$Gcd(a,m)=1$,那么存在$d\leq m-1$(比如$\varphi (m)$)使得$a^{d}\%m=1$。如果对于某个g使得在$[1,m-1]$内只有$\varphi (m)$满足$g^{\varphi (m)}\%m=1$,那么g被称作m的原根。比如7的原根是3,因为在1,2,3,4,5,6中只有3^6%7=1。

3 算法描述
NTT的原理与FFT的原理完全相同。即首先我们会将$A,B$通过NTT变换转化成新数列$A^{'},B^{'}$,然后我们有$C_{k}^{'}=A_{k}^{'}B_{k}^{'}$。最后通过NTT逆变换,将$C^{'}$转化成$C$.

FFT变换是这样的:$A_{k}^{'}=\sum_{j=0}^{n-1}A_{j}e^{\frac{2\pi i}{n}kj}=\sum_{j=0}^{n-1}A_{j}w_{n}^{kj}$。

FFT逆变换是这样的:$A_{k}=\frac{1}{n}\sum_{j=0}^{n-1}A_{j}^{'}e^{-\frac{2\pi i}{n}kj}=\frac{1}{n}\sum_{j=0}^{n-1}A_{j}^{'}w_{n}^{-kj}$

$e^{\frac{2\pi i}{n}}$在这里之所以能够使用,是因为它在乘法意义下构成一个群。同理,在模P的系统中,对于乘法来说,$g^{\frac{P-1}{n}}$也构成一个群,类似$(e^{\frac{2\pi i}{n}})^{n}=1$,$(g^{\frac{P-1}{n}})^{n}%P=1$。其中g是P的原根。

因此,NTT变换是: $A_{k}^{'}=\sum_{j=0}^{n-1}A_{j}g^{\frac{P-1}{n}kj}$

NTT逆变换: $A_{k}=\frac{1}{n}\sum_{j=0}^{n-1}A_{j}^{'}g^{-\frac{P-1}{n}kj}=\frac{1}{n}\sum_{j=0}^{n-1}A_{j}^{'}g^{((P-1)-\frac{P-1}{n})kj}$

所以,NTT变换使用的基为$g^{\frac{P-1}{n}}$,NTT逆变换使用的基为$g^{(P-1)-\frac{P-1}{n}}$

这里有一些需要注意的问题。在实际计算时,我们会将整个数列的长度扩展至$2^{K}$次幂,因此在每一次分治时,每个子问题的长度n也都是2的某次幂。而这里,必须要保证n能够整除$P-1$,所以若$P=c*2^t+1$,其中$c$为奇数。那么一定要满足$t\geq K$

NTT的更多相关文章

  1. Tsinsen A1493 城市规划(DP + CDQ分治 + NTT)

    题目 Source http://www.tsinsen.com/A1493 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在 ...

  2. HDU5322 Hope(DP + CDQ分治 + NTT)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5322 Description Hope is a good thing, which can ...

  3. Codeforces632E Thief in a Shop(NTT + 快速幂)

    题目 Source http://codeforces.com/contest/632/problem/E Description A thief made his way to a shop. As ...

  4. hihoCoder1388 Periodic Signal(2016北京网赛F:NTT)

    题目 Source http://hihocoder.com/problemset/problem/1388 Description Profess X is an expert in signal ...

  5. hihocoder #1388 : Periodic Signal NTT&FFT

    传送门:hihocoder #1388 : Periodic Signal 先来几个大牛传送门:  (模板) NTT long long 版 解法一:因为我们知道FFT会精度不够,所以坚持用NTT,但 ...

  6. FFT,NTT 专题

    学习傅里叶的基本性质及其代码,可以参考大神理解 还有 ACdream 的博客 贴一下NTT的模板: using namespace std; typedef long long ll; int n; ...

  7. [快速数论变换 NTT]

    先粘一个模板.这是求高精度乘法的 #include <bits/stdc++.h> #define maxn 1010 using namespace std; char s[maxn]; ...

  8. HDU5829 NTT

    以下这份代码并没有过.但感觉没有问题.不是蜜汁WA就是蜜汁T. #include <cstdio> #include <iostream> #include <cstri ...

  9. NTT【51nod】1514 美妙的序列

    题意:1~n 的全排列中,有多少个排列满足任意从中间切成两段后,左边段的最大值大于右边段的最小值? 例如:n为3时有3种 2 3 1 3 1 2 3 2 1 解释:比如 2 3 1 (2) (3 1) ...

随机推荐

  1. 夺命雷公狗---DEDECMS----23dedecms修改内容页面展示的信息

    我们在网站上不管点击那个影视作品的A连接都是进入到一个同样的页面,因为他们是一个模版文件: 我们还没有对这个模版进行任何的修改,所以我们要在内容模版增加标签取出对应的影视作品,而且导航条也是按照模版上 ...

  2. SQL—— 事务

    SQL 事务: 1.  定义: 事务是作为单个逻辑单元执行的一系列操作. 多个操作作为一个整体向系统提交,要么执行.要么都不执行,事务是一个不可分割的工作逻辑单元.这特别适用于多用户同时操作的数据通信 ...

  3. PHP自动生成后台导航网址的最佳方法

    'http://www.jbxue.com'=> '脚本学堂首页', </script>

  4. ASP.NET MVC5 新特性:Attribute路由使用详解 (转载)

    1.什么是Attribute路由?怎么样启用Attribute路由? 微软在 ASP.NET MVC5 中引入了一种新型路由:Attribute路由,顾名思义,Attribute路由是通过Attrib ...

  5. android 学习随笔二十四(动画:帧动画)

    帧动画,一张张图片不断的切换,形成动画效果 * 在drawable目录下定义xml文件,子节点为animation-list,在这里定义要显示的图片和每张图片的显示时长 * FrameAnimatio ...

  6. Index Condition Pushdown Optimization

    Index Condition Pushdown (ICP) is an optimization for the case where MySQL retrieves rows from a tab ...

  7. Linux系统调用---同步IO: sync、fsync与fdatasync【转】

    转自:http://blog.csdn.net/cywosp/article/details/8767327 [-] 1  write不够需要fsync 2 fsync的性能问题与fdatasync ...

  8. M公司面试

    1.技术面 跟日历相关的,根据你联系人的时间,确定可以安排活动的时间 2.final面 你的项目经历,挑战,解决办法: 判断两个长方形,是否有重叠部分: 你的人生规划[这个很多公司都会问]

  9. WIN7(VISTA)系统无法上网问题排查方法

    WIN7(VISTA)系统无法上网问题排查方法 一.无法通过DHCP自动获取到IP 1. 确认正确配置路由器的DHCP功能 a.一般租期建议设置为1-3小时,推荐设置1小时. b.DHCP地址池不要和 ...

  10. DataGuard主备归档存在gap的处理办法

    DataGuard主备之间可能由于网络等原因,造成备库和主库之间的归档日志不一致,这样就产生了gap. 解决gap的步骤: 1.在备库获得gap的详细信息 2.将需要的归档日志从主库拷贝到备库 3.备 ...