uva 11324
Problem B: The Largest Clique

Given a directed graph G, consider the following transformation. First, create a new graph T(G) to have the same vertex set as G. Create a directed edge between two vertices u and v in T(G) if and only if there is a path between u and v in G that follows the directed edges only in the forward direction. This graph T(G) is often called the transitive closure of G.
We define a clique in a directed graph as a set of vertices U such that for any two vertices u and v in U, there is a directed edge either from u to v or from v to u (or both). The size of a clique is the number of vertices in the clique.
The number of cases is given on the first line of input. Each test case describes a graph G. It begins with a line of two integers n and m, where 0 ≤ n ≤ 1000 is the number of vertices of G and 0 ≤ m ≤ 50,000 is the number of directed edges of G. The vertices of G are numbered from 1 to n. The following m lines contain two distinct integers u and v between 1 and n which define a directed edge from u to v in G.
For each test case, output a single integer that is the size of the largest clique in T(G).
Sample input
1
5 5
1 2
2 3
3 1
4 1
5 2
Output for sample input
4
Zachary Friggstad
强连通分量缩点成DAG,求点集最大的路径。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
#include <vector> using namespace std; const int MAX_N = ;
const int edge = 5e4 + ;
int N,M;
int low[MAX_N],pre[MAX_N],cmp[MAX_N];
int first[MAX_N],Next[edge],v[edge];
int ind[MAX_N],oud[MAX_N];
int dfs_clock,scc_cnt;
int dep[MAX_N];
int num[MAX_N];
stack <int > S;
vector<int > G[MAX_N]; void dfs(int u) {
pre[u] = low[u] = ++dfs_clock;
S.push(u);
for(int e = first[u]; e != -; e = Next[e]) {
if(!pre[ v[e] ]) {
dfs(v[e]);
low[u] = min(low[u],low[ v[e] ]);
} else if( !cmp[ v[e] ]) {
low[u] = min(low[u],pre[ v[e] ]);
}
} if(pre[u] == low[u]) {
++scc_cnt;
for(;;) {
int x = S.top(); S.pop();
cmp[x] = scc_cnt;
num[scc_cnt]++;
if(x == u) break;
}
}
}
void scc() {
dfs_clock = scc_cnt = ;
memset(cmp,,sizeof(cmp));
memset(pre,,sizeof(pre)); for(int i = ; i <= N; ++i) if(!pre[i]) dfs(i);
} void dfs1(int u) {
pre[u] = ;
for(int i = ; i < G[u].size(); ++i) {
if(!pre[ G[u][i] ]) {
dfs1( G[u][i] );
}
dep[u] = max(dep[u],dep[ G[u][i] ] + num[u]);
}
} void solve() {
scc();
for(int i = ; i <= scc_cnt; ++i) G[i].clear();
for(int i = ; i <= scc_cnt; ++i) dep[i] = num[i]; for(int i = ; i <= N; ++i) {
for(int e = first[i]; e != -; e = Next[e]) {
if(cmp[i] == cmp[ v[e] ]) continue;
G[ cmp[i] ].push_back(cmp[ v[e] ]);
}
} memset(pre,,sizeof(pre));
for(int i = ; i <= scc_cnt; ++i) {
if(!pre[i]) dfs1(i);
} int ans = ;
for(int i = ; i <= scc_cnt; ++i) {
ans = max(ans,dep[i]);
} printf("%d\n",ans); } void add_edge(int id,int u) {
int e = first[u];
Next[id] = e;
first[u] = id;
}
int main()
{
//freopen("sw.in","r",stdin);
int t;
scanf("%d",&t);
while(t--) {
scanf("%d%d",&N,&M);
for(int i = ; i <= N; ++i) first[i] = -;
memset(num,,sizeof(num)); for(int i = ; i <= M; ++i) {
int u;
scanf("%d%d",&u,&v[i]);
add_edge(i,u);
} solve();
}
//cout << "Hello world!" << endl;
return ;
}
uva 11324的更多相关文章
- uva 11324 The Largest Clique
vjudge 上题目链接:uva 11324 scc + dp,根据大白书上的思路:" 同一个强连通分量中的点要么都选,要么不选.把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它 ...
- UVA 11324 - The Largest Clique(强连通分量+缩点)
UVA 11324 - The Largest Clique 题目链接 题意:给定一个有向图,要求找一个集合,使得集合内随意两点(u, v)要么u能到v,要么v能到u,问最大能选几个点 思路:强连通分 ...
- 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)
layout: post title: 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP) author: "luowentaoaa" catalog: true ...
- uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...
- UVa 11324 & 强联通分量+DP
题意: 一张无向图,求点集使其中任意两点可到达. SOL: 强联通分量中的点要么不选要么全都选,然后缩点DAG+DP 记录一下思路,不想写了...代码满天飞.
- Uva 11324 最大团
题目链接:http://vjudge.net/contest/141990#problem/B 题意: 给一张有向图G,求一个结点集数最大的结点集,是的该结点集中任意两个结点 u 和 v,满足: 要么 ...
- uva 11324 The Largest Clique (Tarjan+记忆化)
/*每个环 要么不选 要么全选 可缩点 就得到一个GAD图 然后搞搞算出最大路径*/ #include<iostream> #include<cstdio> #include& ...
- uva 11324 The Largest Clique(图论-tarjan,动态规划)
Problem B: The Largest Clique Given a directed graph G, consider the following transformation. First ...
- UVA - 11324 The Largest Clique 强连通缩点+记忆化dp
题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...
随机推荐
- java 网页页面抓取标题和正文
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import ...
- EMVTag系列1《数据分组》
数据分组的设计在个人化过程中承担着重要的作用.数据分组标识符(DGI)是两字节十六进制数.数据分组标识的第一个字节等于'01'到'1E',表明数据存储的SFI.第二个字节表明SFI记录的记录编号.其他 ...
- Tutorial: Importing and analyzing data from a Web Page using Power BI Desktop
In this tutorial, you will learn how to import a table of data from a Web page and create a report t ...
- iOS7 隐藏状态栏 hide statusBar
1.调用 [self setNeedsStatusBarAppearanceUpdate]; 2.重载以下函数 - (BOOL)prefersStatusBarHidden{ return _hide ...
- 利用python scrapy 框架抓取豆瓣小组数据
因为最近在找房子在豆瓣小组-上海租房上找,发现搜索困难,于是想利用爬虫将数据抓取. 顺便熟悉一下Python. 这边有scrapy 入门教程出处:http://www.cnblogs.com/txw1 ...
- opencv车道线检测
opencv车道线检测 完成的功能 图像裁剪:通过设定图像ROI区域,拷贝图像获得裁剪图像 反透视变换:用的是老师给的视频,没有对应的变换矩阵.所以建立二维坐标,通过四点映射的方法计算矩阵,进行反透视 ...
- QT中实现中文的显示与国际化
1 增加头文件 #include "QTextCodec" 2 在文件中增加如下内容 QTextCodec::setCodecForTr(QTextCodec::codecF ...
- [SSH服务]——SSH详解、常用的远程连接工具
在总结ssh原理前,我先做了一个ssh过程的实验 首先我搭建了这样一个实验环境: (1) SSH Server:10.0.10.198 (2) SSH Client:10.0.10.158 在Serv ...
- ubuntu 10.04 fcitx 4.12 实现按下shit切换输入法同时提交英文输入
安装: echo "add fcitx ppa..." sudo apt-add-repository ppa:fcitx-team/nightly sudo apt-get in ...
- CentOS安装Git实现多人同步开发
描 述 要开发一个"cms系统",有2个人分别是:晓飞, 盈月.要求使用Git来进行版本控制. 项目信息 版本控制:Git 项目名称:cms 开发人员:xiaofei,yingyu ...